Медведева Елена Львовна

НЕЙРОТРОФИЧЕСКИЕ ФАКТОРЫ В СЫВОРОТКЕ КРОВИ БОЛЬНЫХ РАССЕЯННЫМ СКЛЕРОЗОМ ПРИ РАЗЛИЧНЫХ ВАРИАНТАХ ЛЕЧЕНИЯ ПРЕПАРАТАМИ, ИЗМЕНЯЮЩИМИ ТЕЧЕНИЕ РАССЕЯННОГО СКЛЕРОЗА

14.01.11 – нервные болезни

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в Государственном бюджетном образовательном учреждении высшего профессионального образования «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Министерства здравоохранения Российской Федерации (ректор – д.м.н., профессор И.П. Корюкина).

Научный руководитель:

доктор медицинских наук, профессор ГБОУ ВПО «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Минздрава России. г. Пермь

Байдина Татьяна Витальевна

Официальные оппоненты:

заведующая кафедрой неврологии ФПДПО, доктор медицинских наук, профессор ГБОУ ВПО "Южно-Уральский государственный медицинский университет" Минздрава России, г. Челябинск

Бельская Галина Николаевна

доктор медицинских наук, профессор кафедры неврологии с курсами нейрохирургии и медицинской генетики ГБОУ ВПО "Башкирский государственный медицинский университет" Минздрава России, г. Уфа

Бахтиярова Клара Закиевна

Ведущая организация: ГБОУ ВПО «Сибирский государственный медицинский университет» Минздрава России, г. Томск

Защита состоится «___» ___2015 г. в ___ часов на заседании диссертационного совета Д208.067.01 при ГБОУ ВПО ПГМУ им. ак. Е.А. Вагнера Минздрава России (614990, г. Пермь, ул. Петропавловская, 26).

С диссертацией можно ознакомиться в библиотеке ГБОУ ВПО ПГМУ им. ак. Е.А. Вагнера Минздрава России (г. Пермь, ул. Петропавловская, 26) и на сайте www.psma.ru, с авторефератом можно ознакомиться на сайтах www.vak.ed.gov.ru, www.psma.ru

Автореферат разослан «____» _____ 2015 г.

Ученый секретарь диссертационного совета доктор медицинских наук, профессор

Мудрова Ольга Александровна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы.

Рассеянный склероз (РС) - одна из наиболее актуальных проблем современной неврологии, значимость которой обусловлена тем, что заболевание поражает молодых людей, ведущих активную трудовую деятельность и социальную жизнь, и при отсутствии адекватного лечения неизбежно приводит к инвалидности [Бойко А.Н, 2009; Шмидт Т.Е., Яхно Н.Н., 2010].

Значительная распространённость заболевания, сложность многих сторон патогенеза, многообразие клинических проявлений болезни, быстро наступающая инвалидизация, необходимость дорогостоящих лечебных мероприятий определяют высокую медико-социальную значимость проблемы.

Одновременно с процессами воспаления и атрофии при РС наблюдаются и процессы регенерации, в частности, восстановление миелина и ветвление аксонов и дендритов с образованием новых синапсов. Известно, нейропластичность регулируется семейством нейротрофических факторов [Гомазков, О.А., 2011], представителями которых являются мозговой нейротрофический фактор (BDNF) и цилиарный нейротрофический фактор (CNTF). Ряд фактов позволяют предположить, что нейротрофины PC. патогенезе Так. BDNF может антероградно транспортироваться и выделяться нейронами, что особенно усиливается после аксонального повреждения и транссекции. Выявление данного феномена предполагает, что нейрональный BDNF может обеспечивать эндогенную нейротрофическую поддержку в очагах РС [Переседова, А. В., 2013].

Несмотря на большие и очевидные успехи и достижения в изучении патогенеза PC, трофические механизмы при этом заболевании изучены недостаточно.

Цель исследования:

Изучить концентрацию нейротрофических факторов (BDNF, CNTF) в сыворотке крови пациентов с рассеянным склерозом и влияние на неё различных характеристик заболевания, а также терапии, изменяющей течение рассеянного склероза (ПИТРС).

Задачи исследования:

- 1. Определить концентрацию мозгового нейротрофического фактора в сыворотке крови пациентов с рассеянным склерозом и сопоставить ее с клиническими проявлениями заболевания.
- 2. Определить концентрацию цилиарного нейротрофического фактора в сыворотке крови пациентов с рассеянным склерозом и сопоставить ее с различными характеристиками заболевания.
- 3. Изучить уровень мозгового и цилиарного нейротрофических факторов у больных рассеянным склерозом при различных вариантах иммуномодудирующей терапии.
- 4. Изучить динамику клинической картины заболевания, астении, эмоциональных и когнитивных функций, качества жизни и течения рассеянного склероза при лечении ПИТРС в сопоставлении с динамикой нейротрофических факторов.

Научная новизна исследования.

Впервые показано, что у больных рассеянным склерозом имеется исходная недостаточность BDNF, возможно, обусловливающая особую чувствительность нервной системы к повреждению и низкую способность нервных структур к восстановлению. Определена ассоциация BDNF со стволовыми нарушениями, а также с одной из основных характеристик выраженности повреждения при рассеянном склерозе - амбулаторным индексом, что указывает на отрицательную роль первичной недостаточности BDNF в развитии рассеянного склероза. Установлено, что цилиарный нейротрофический фактор у больных рассеянным склерозом обеспечивает поддержку нейронов при повреждении, о чем свидетельствует положительная корреляция между когнитивными функциями и его концентрацией в сыворотке крови. Впервые проведено сопоставительное исследование нейротрофических влияний интерферона-бета, финголимода и натализумаба, показавшее отсутствие преимуществ какого-либо из них в этом отношении. Установлено, что положительное влияние на течение заболевания изученных ПИТРС не обусловлено нейротрофическим воздействием. Впервые показана особая чувствительность второго компонента MSFC - 9-Hole Peg Test, к динамике клинических симптомов при лечении ПИТРС.

Практическая значимость работы.

Низкое содержание BDNF у больных ремиттрирующим рассеянным склерозом указывает на необходимость включения в комплекс лечения препаратов, обладающих нейротрофическими свойствами. Показано, что ПИТРС исследованные не обладают свойством стимуляции нейропластичности и положительное воздействие этих препаратов на течение заболевания, неврологический статус и качество жизни пациентов с рассеянным склерозом обусловлено их иммуномодулирующими свойствами без участия нейротрофических механизмов. Ни один из исследованных препаратов: интерфероны-бета, финголимод и натализумаб, не имеют преимуществ в отношении способности стимулировать нейропластичность.

С целью определения индивидуальной чувствительности к тому или иному ПИТРС на ранних этапах терапии может быть использован 9-Hole Peg Test, как наиболее чувствительный к положительным сдвигам неврологического статуса.

Основные положения, выносимые на защиту:

- 1. У больных рассеянным склерозом имеет место исходная недостаточность мозгового нейротрофического фактора, что проявляется низкой по сравнению с популяционным уровнем его концентрацией в сыворотке крови, не сопряженной с длительностью заболевания. Нейротрофическая недостаточность играет отрицательную роль в течении заболевания, поскольку коррелирует со стволовыми нарушениями, а также с одной из основных характеристик выраженности мозгового и спинального повреждения при рассеянном склерозе амбулаторным индексом.
- 2. Цилиарный нейротрофический фактор, отсутствующий в свободных средах в норме, экспрессируется у больных рассеянным склерозом, высвобождаясь из поврежденных аксонов и обеспечивая трофику и поддержку нейронов при повреждении, о чем свидетельствует положительная корреляция между когнитивными функциями и его концентрацией в сыворотке крови.
- 3. Терапия в течение 6 месяцев интерферонами-бета, натализумабом и финголимодом оказывает положительное действие на течение рассеянного склероза, уменьшая неврологический дефицит, астению, улучшая качество жизни и препятствуя развитию обострений, но в

механизмах их терапевтического воздействия нейротрофические механизмы участия не принимают.

Личный вклад диссертанта в исследование.

Материал, представленный в диссертации и автореферате, получен, обработан, проанализирован и оформлен лично автором. Лично автором проводилось обследование пациентов на базе кафедры неврологии имени проф. В.П. Первушина ГБОУ ВПО ПГМУ им. ак. Е.В. Вагнера Минздрава России и в Пермском краевом центре рассеянного склероза на базе ГБУЗ ПК «Ордена "Знак Почета" Пермской краевой клинической больницы». Исследование концентрации BDNF, CNTF в сыворотке проводилось самостоятельно на базе микробиологической лаборатории ЦНИЛ ПГМУ им. академика Е.А.Вагнера под руководством и контролем д.м.н. Д.Ю. Соснина.

Апробация работы.

Материалы диссертации доложены и обсуждены на сессии молодых ученых ГБОУ ВПО «ПГМА им. академика Е.А.Вагнера» Минздрава России (Пермь, 2014 г.), научной сессии ГБОУ ВПО ПГМУ «Навстречу 100-летию высшего медицинского образования на Урале» (Пермь, 2015 г.), научнопрактической конференции "Новое в науке: Современные проблемы и тенденции" (Нефтекамск, 2015 г.), на ІІ Конгрессе российского комитета исследователей рассеянного склероза (г. Ярославль 2015 г.).

Внедрение практику. Полученные результаты диссертационного исследования внедрены в лечебно-диагностический процесс ГБУЗ ПК "Ордена "Знак Почета" Пермской краевой клинической больницы" и ГБУЗ ПК "Чусовской городской больницы им. В.Г. Любимова".

Основные положения внедрены в учебный процесс на кафедре неврологии имени профессора В.П. Первушина ГБОУ ВПО «Пермский государственный медицинский университет им. академика Е.А. Вагнера» Минздрава России.

Публикации.

По материалам диссертационной работы опубликовано 11 научных работ, в том числе 3 - в рецензируемых изданиях, рекомендованных ВАК.

Структура и объем диссертации.

Диссертация изложена на 112 страницах машинописного текста и состоит из введения, обзора литературы, главы описания материалов и методов исследования, 2-х глав с результатами исследования, раздела

обсуждения полученных данных, выводов и практических рекомендаций, списка литературы. Библиографический список включает 51 отечественный и 91 иностранный источник. Диссертация иллюстрирована 22 таблицами, 14 рисунками и 2 клиническими примерами.

Диссертация входит в план НИР ГБОУ ВПО «Пермский государственный медицинский университет имени академика Е.А.Вагнера» (регистрационный № 115030310058).

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

В работе представлены результаты обследования 82 больных с достоверным диагнозом РС. В исследование вошли 45 женщин (54,9%) и 37 мужчин (45,1%).

Возраст обследованных больных колебался от 19 до 57 лет, среднее значение составило 34 (25-41) года. Возраст пациентов в начале заболевания составил в среднем 25 (29-32) лет. Длительность заболевания равнялась 6,0 (3-11) годам. Минимальное значение длительности заболевания составило менее года, а максимальное - 23 года. Среднее значение скорости прогрессирования заболевания составило 0,5 (0,36-0,75) баллов/год с диапазоном значений от 0,1 до 4,0. Дебют РС был представлен разнообразными клиническими проявлениями. Чаще всего заболевание начиналось со зрительных симптомов (17 пациентов, 20,7%), чувствительных расстройств (16 пациентов, 19,5%) и коодинаторных нарушений (15 18,3%). Несколько заболевание реже дебютировало двигательными расстройствами (13 человек, 15,8%), полисимптомными проявлениями (10 человек, 12,2%), либо нарушениями черепных нервов (9 человек, 11%). Начало РС с нарушений функции тазовых органов встретилось лишь у двух человек.

Комплекс обследования пациентов состоял из анализа жалоб, сбора анамнестических данных, оценки неврологических симптомов заболевания и уровня инвалидизации по шкале EDSS (Expanded Disability Status Scale) [Kurtzke J.F., 1983] с использованием нейропсихологических и лабораторно-инструментальных методов. Для оценки неврологического статуса помимо шкалы EDSS использован тест MSFC, который включает в себя 3 компонента: оценку ходьбы - Timed 25-Foot walk, оценку функций верхних

конечностей - 9-Hole Peg Test (9-HPT), оценку когнитивных способностей - Paced Auditory Serial Addition Test (PASAT-3).

Всем пациентам проведено психометрическое тестирование, которое включало оценку уровня тревоги и депрессии по шкале HADS, астении - по шкале MFI-20, качества жизни – по шкале MSIS-29.

У всех больных диагноз РС подтвержден магнитно-резонансной томографией головного и спинного мозга.

В исследование были включены «наивные» (то есть ранее не получавшие ПИТРС) пациенты и пациенты, получающие различные варианты ПИТРС с длительностью лечения не менее 6 месяцев.

Обследование проводилось на различных этапах лечения, таким образом, в случае смены препарата один пациент при анализе результатов терапии мог попасть в группы с лечением различными препаратами. Важно, что в этом случае все клинические и лабораторные показатели исследовались и оценивались одномоментно.

Обследовано 44 наивных пациента, из них 23 женщины и 21 мужчина со средним возрастом 27,5 (24,5-45,5) лет. Уровень инвалидизации по шкале EDSS варьировал от 1,5 до 4,5 баллов, медиана этого показателя составила 3 (2-4) балла.

27 пациентов (19 мужчин и 8 женщин в возрасте от 22 лет до 51 года) получали терапию интерферонами бета не менее 6 месяцев. Их средний возраст составил 33; 26,0-42,0 года (p=0,433 с группой наивных пациентов). Уровень инвалидизации по шкале EDSS у пациентов данной группы варьировал в таком же диапазоне, что и у наивных пациентов (1,5 - 4,5 балла), среднее значение EDSS составило 4,0 (2,0-4,5) балла (p=0,099 с группой наивных пациентов).

В исследование были включены 15 пациентов, которые получали терапию не менее полугода препаратом финголимод (гиленией). В число пациентов этой группы вошли 12 женщин и 3 мужчин в возрасте 34 (26-37) лет (p=0,607 с группой наивных пациентов), возрастной диапазон 22 - 43 года.

Уровень инвалидизации по шкале EDSS пациентов данной группы варьировал в диапазоне 2,0 - 4,0 балла, среднее значение составило 3,5 (2,5-4,0) балла (p=0,571 с группой наивных пациентов).

В группу пациентов, получавших терапию моноклональными антителами (натализумаб), вошли 25 пациентов (11 женщин и 14 мужчин).

Средний возраст их был равен 37 (29-42) и колебался от 23 до 49 лет (p=0,064 с группой наивных пациентов). Степень инвалидизации по шкале EDSS в этой группе варьировала от 1,5 до 5,5 баллов, при этом среднее значение показателя составило 4,0 (3,5-5,0) балла (p=0,000 с группой наивных пациентов).

Концентрацию человеческого мозгового нейротрофического фактора (BDNF) и цилиарного нейротрофического фактора (CNTF) в сыворотке крови пациентов определяли методом твердофазного иммуноферментного анализа с использованием наборов «Human BDNF Immunoassay» и «Human CNTF Immunoassay» фирмы R&D Systems (USA).

Статистический анализ полученных данных проводился с использованием пакета Statistica 6.0 при помощи непараметрических методов. Средние значения количественных признаков представлены медианой с верхней и нижней квартилью. Для сравнительного анализа двух независимых групп использован критерий Манна-Уитни (М-W), для сравнения двух зависимых признаков - критерий Вилкоксона (W). Корреляционный анализ выполнен с использованием рангового коэффициента Спирмена (R). Критический уровень значимости при проверке статистических гипотез принимался равным 0,05.

Результаты исследования и их обсуждение

Уровень неврологического дефицита у 82 обследуемых пациентов по шкале EDSS составил 3,5 (2,5 -4,5) балла. Средние значения выраженности очаговых неврологических проявлений по подсистемам шкалы EDSS составили: зрительная функция (FS1) - 0 (0-1), стволовые функции (FS2) - 1 (1-2), пирамидные функции (FS3) - 3 (2-3), мозжечковые функции (FS4) - 2 (2-3), сенсорные функции (FS5) - 0 (0-2), тазовые функции (FS6) - 1 (0-2), функция мышления (FS7) -1 (1-2), ambulation score -1 (0-2).

Среднее значение показателя первого компонента теста MSFC (оценка функции ходьбы на дистанцию 7,5 метров) равнялось 4,80 (4,20-5,60) секунды.

Среднее значение второго компонента теста MSFC (оценка функций моторики кисти с использованием 9-Hole Peg Test) составило 33,62 (30,77-37,13) секунды.

Третий компонент теста MSFC для оценки когнитивных функций PASAT характеризовался средним значением 40 (33-49) баллов, при 60 возможных правильных ответах.

Наличие клинической тревоги выявлено у 11 человек (13,4%), среди них 2 женщины и 9 мужчин; субклинической тревоги - у 26 человек (31,7%), среди них 10 мужчин и 16 женщин. У 45 (58,7%) пациентов не выявлено тревоги по шкале HADS.

Не смотря на большое количество пациентов с тревогой, средний балл этого показателя по шкале HADS у больных исследуемой группы не был повышен (6; 4-10). Среднее значение тревоги составило у женщин - 6 (4-10), у мужчин - 7 (4-11) баллов. По уровню тревоги мужчины и женщины не различались (p=0,41).

Отсутствие депрессии по шкале HADS выявлено у большей части пациентов (61 человека, 74,4%), субклиническая депрессия обнаружена у 10 человек (12,2%), среди них - у 6 женщин и 4-х мужчин; наличие клинической депрессии выявлено у 11 человек (13,4%), из них - у 7 женщин и у 4-х мужчин. Среднее значение баллов, характеризующих депрессию, составило у женщин - 5 (2-8), у мужчин - 4 (2-6). По уровню депрессии мужчины и женщины не различались (p=0,62). Наличие больных с депрессией в группе не привело к превышению нормальных значений показателя в целом: средний балл уровня депрессии по шкале HADS составил 4 (2-7).

Для оценки синдрома усталости у обследуемых пациентов использовалась шкала MFI -20 (табл.1).

Таблица 1. Выраженность различных компонентов синдрома усталости у больных рассеянным склерозом по шкале MFI-20

	Медиана	Міх и Мах
Показатели	(квартили)	значения
	(баллы)	(баллы)
Общая астения	11 (9-15)	4-20
Физическая астения	11 (8-14)	4-20
Пониженная активность	10 (8-13)	4-20
Снижение мотивации	10 (8-11)	4-16
Психическая астения	10 (7-12)	4-19
Общий балл астении	53 (42-64)	25-90

Несмотря на невысокие средние значения суммарного общего балла по шкале MFI-20 и ее компонентов, наличие пониженной активности выявлено у 22 человек, физической астении - у 33 человек, снижение мотивации - у 13 пациентов. Психическая астения присутствовала 18 пациентов, общая астения - у 37. В целом синдром усталости присутствовал у 26 пациентов.

По результатам опросника MSIS-29 среднее значение физического компонента качества жизни составило 33 (25-44) балла, а психического компонента - 15,5 (11-22) баллов.

Концентрация BDNF в сыворотке крови определена у 82 пациентов с PC. Индивидуальные значения этого показателя колебались в диапазоне от 0,64 до 34,88 нг/мл, его среднее значение составило 14,68 нг/мл (7,14-21,95) нг/мл при контрольном - 27,79 нг/мл. За контрольное значение показателя была принята концентрация, установленная фирмой-производителем лабораторного набора.

Среднее значение концентрации данного нейротрофина в сыворотке крови женщин равнялось 15,94 (7,13-24,09) нг/мл, мужчин - 14,41 (7,58-19,35) нг/мл, без достоверных различий (p=0,38).

Исследуемый параметр не зависел от возраста пациентов (R=0,05, p=0,64) и их возраста в начале заболевания (R=0,13, p=0,25).

Не выявлено взаимосвязи содержания BDNF и таких характеристик болезни, как скорость прогрессирования (R=-0,08, p=0,48) и длительность PC (R=-0,08, p=0,47).

Не было выявлено достоверной связи BDNF с количеством очагов на MPT в режиме T1 (R=-0,03, p=0,89), в режиме T2 (R=0,16, p=0,55), а также с количеством очагов, накапливающих контрастное вещество (R=0,13, p=0,60).

Выполнен корреляционный анализ зависимости уровня BDNF от выраженности аффективных расстройств, синдрома усталости и его компонентов, качества жизни и состояния когнитивных функций, показавший отсутствие сопряженности анализируемых показателей.

Исследована связь содержания BDNF с выраженностью неврологического дефицита по шкале EDSS, ее подсистемами, а также с двумя компонентами теста MSFC (табл. 2).

Проведенный корреляционный анализ выявил обратную связь стволовых функций и амбулаторного индекса с содержанием BDNF в

сыворотке крови: чем хуже были стволовые функции и ходьба (выше балл), тем ниже концентрация BDNF.

Таблица 2. Корреляционная связь концентрации BDNF в сыворотке крови пациентов с рассеянным склерозом и степени выраженности неврологического дефицита

Корреляционные пары	R	p
BDNF и зрительная функция	-0,12	0,269
BDNF и стволовые функции	-0,23	0,039
BDNF и пирамидные функции	-0,14	0,196
BDNF и мозжечковые функции	-0,17	0,137
BDNF и сенсорные функции	-0,17	0,135
BDNF и тазовые функции	-0,13	0,262
BDNF и функция мышления	-0,03	0,788
BDNF и ambulation	-0,26	0,016
BDNF и общий балл EDSS	-0,19	0,082
BDNF и ср. показатель оценки функции верхних конечностей MSFC	-0,05	0,678
BDNF и ср. показатель оценки функции нижних конечностей	-0,14	0,217

Проведено сравнение концентрации BDNF в сыворотке крови пациентов, ранее не лечившихся иммуномодулирующими препаратами, и пациентов, получавших различные варианты ПИТРС.

Концентрация BDNF в сыворотке крови у наивных пациентов варьировала от 2,72 до 34,89 нг/мл, ее медиана составила 15,43 (9,23-24,35) нг/мл, что было ниже контрольного значения здоровых лиц (27,79 нг/мл).

Концентрация BDNF в сыворотке пациентов, лечившихся интерферонами, колебалась в диапазоне 0,64 - 29,93 нг/мл, медиана составила 8,27 (5,28-19,40) нг/мл. Показатель был ниже контрольного значения (27,79 нг/мл) и ниже, чем у наивных пациентов ($p^{\text{M-W}}$ =0,042), (puc.1).

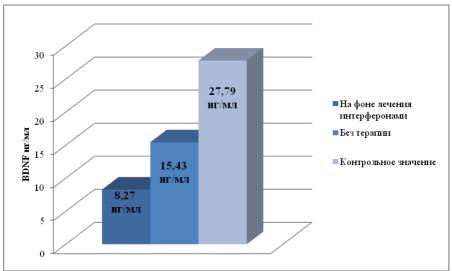
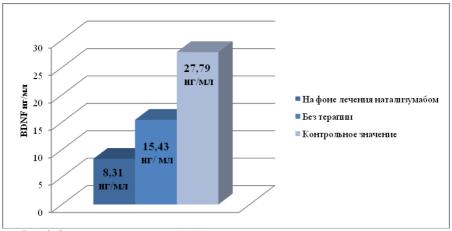


Рис. 1. Значение концентрации BDNF в сыворотке крови у пациентов с рассеянным склерозом на фоне лечения интерферонами в сравнении с наивными пациентами и контрольным значением

Сравнение значения BDNF пациентов до и после лечения интерферонами не выявило достоверной динамики показателя под влиянием терапии (табл. 3).


Таблица 3. Концентрация BDNF в сыворотке крови больных рассеянным склерозом до и через 6 месяцев терапии интерферонами

Статистический	BDNF сыворотки крови нг/мл		Значимость
метод	До лечения	После лечения	различий р
Метод парных	10,45 (7,80-18,09)	16,12 (5,37-20,50)	$p^{W} = 0.504$
сравнений	(n=9)	(n=9)	p =0,304
Сравнение	10.45 (7.90.19.00)	9 27 (5 29 10 40)	
независимых	10,45 (7,80-18,09) (n=9)	8,27 (5,28-19,40)	$p^{M-W}=0,930$
переменных	(11–9)	(n=27)	

Таким образом, на фоне терапии интерферонами-бета определялось низкое содержание BDNF в сыворотке крови больных PC, лечение интерферонами-бета не оказывало существенного влияния на данный нейротрофин.

Концентрация BDNF в сыворотке пациентов (25 человек), получавших терапию моноклональными антителами (натализумаб), варьировала в диапазоне 1,66 - 29,53 нг/мл, медиана составила 8,31(5,86-

22,91) нг/мл, что было ниже популяционного значения (27,79 нг/мл, p<0,05) и достоверно ниже (p=0,044), чем в группе наивных пациентов (рис.2).

Рис. 2. Значение концентрации BDNF в сыворотке крови у пациентов с рассеянным склерозом на фоне лечения натализумабом в сравнении с наивными пациентами и контрольным значением

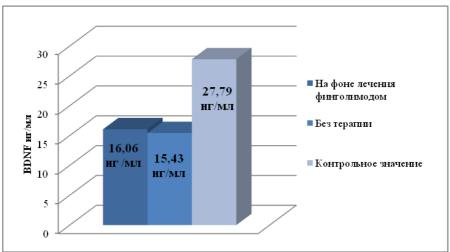

Лечение в течение 6 месяцев натализумабом не оказало значимого влияния на концентрацию BDNF в сыворотке крови пациентов, что продемонстрировано в таблице 4.

Таблица 4. Концентрация BDNF в сыворотке пациентов с PC до и через 6 месяцев терапии натализумабом

Статистический	BDNF сыворотки крови (нг/мл)		Значимость
метод	До лечения	После лечения	различий р
Метод парных сравнений	7,14 (5,05-11,62) (n=15)	9,02 (5,86-19,34) (n=15)	p ^W =0,302
Сравнение независимых переменных	7,14 (5,05-11,62) (n=15)	8,31 (5,86-22,91) (n=25)	p ^{M-W} =0,222

В процессе исследования изучена концентрация BDNF в сыворотке крови 15 пациентов, получавших терапию финголимодом (гилению). Среднее значение BDNF в сыворотке крови составило 16,06 нг/мл с колебаниями в диапазоне от 6,59 до 21, 26 нг/мл.

Показатель был ниже контрольного уровня (27,79 нг/мл, p<0,05) и не отличался от значения, полученного у наивных пациентов ($p^{m-w}=0,412$), (рис.3).

Рис. 3. Концентрация BDNF в сыворотке крови на фоне лечения финголимодом в сравнении с наивными пациентами и контрольным значением

Сравнение значения BDNF до и после лечения финголимодом достоверной динамики показателя не выявило (табл.5).

Таблица 5. Концентрация BDNF в сыворотке крови больных рассеянным склерозом до и через 6 месяцев терапии финголимодом

Статистический	BDNF сыворотки крови (нг/мл)		Значимость
метод	До лечения	После лечения	различий р
Метод парных сравнений	19,73 (15,28-23,55) (n=8)	17,78 (16,06- 21,06) (n=8)	p ^W =0,735
Сравнение независимых переменных	19,73 (15,28-23,55) (n=8)	16,06 (6,59- 21,26) (n=15)	$p^{M-W} = 0,565$

Проведенный анализ показал, что терапия финголимодом в течение 6-ти месяцев не оказала существенного влияния на уровень BDNF в сыворотке крови пациентов.

Концентрация CNTF определена у 43 пациентов (24 мужчин и 19 женщин) с РС. Среднее значение концентрации нейротрофина равнялось 69,9 (31,2-132,3) пг/мл. Согласно данным, предоставленным фирмой-производителем лабораторного набора (R&D Systems, Inc)., полученным при определении этого нейротрофина в сыворотке 34 здоровых доноров, эндогенный CNTF в норме в сыворотке крови не экспрессируется.

Минимальное значение концентрации CNTF в сыворотке крови пациентов составило 1,6 пг/мл, максимальное - 425,6 пг/мл. Среднее значение нейротрофина у мужчин равнялось 73,85 (36,15-103,45) пг/мл, у женщин - 67,40 (7,90- 135,90) пг/мл без достоверных различий (p=0,890).

Не выявлено связи данного параметра с возрастом пациентов (R=0,06, p=0,70), c их возрастом в дебюте заболевания (R=0,01,p=0,93), со скоростью прогрессирования (R=0,00, p=0,97) и длительностью PC (R=0,12, P=0,45).

При проведении корреляционного анализа не было выявлено достоверной связи количественного содержания CNTF в сыворотке с количеством очагов на MPT в режиме T1 (R=0,39, p=0,12), в режиме T2 (R=0,22, p=0,39), а также с количеством очагов, накапливающих контрастное вещество (R=0,27, p=0,29).

Выполненный корреляционный анализ зависимости уровня CNTF от выраженности аффективных расстройств, синдрома усталости и его компонентов, качества жизни и состояния когнитивных функций показал отсутствие сопряженности анализируемых показателей, за исключением когнитивных функций. Результаты анализа представлены в таблице 6.

Прямая зависимость между увеличением CNTF и результатами оценки когнитивных функций не исключают возможности его вовлечения в процессы, связанные с восстановлением когнитивного дефицита у больных рассеянным склерозом.

Таким образом, в сыворотке больных PC определяется CNTF, который у здоровых отсутствует. Его концентрация положительно коррелирует с одной из основных клинических характеристик заболевания - выраженностью когнитивных расстройств, определяемых тестом PASAT-3 (табл.6).

Таблица 6.

Зависимость CNTF от выраженности аффективных расстройств,
астении и ее компонентов, качества жизни и состояния когнитивных
функций больных рассеянным склерозом

R	p
0,08	0,603
-0,10	0,542
0,11	0,500
0,11	0,475
0,26	0,094
0,10	0,508
-0,07	0,675
-0,09	0,576
0,12	0,434
-0,04	0,780
0,30	0,049
	0,08 -0,10 0,11 0,11 0,26 0,10 -0,07 -0,09 0,12 -0,04

Рассмотрена корреляционная связь между содержанием CNTF и основной шкалой EDSS, оценивающей выраженность неврологического дефицита при PC, а также с компонентами теста MSFC. При анализе полученных данных достоверной связи между изучаемым параметром и показателями шкал EDSS и MSFC получено не было (табл.7).

Таблина 7. Корреляционная связь CNTF со степенью выраженности неврологического дефицита пациентов с рассеянным склерозом

Корреляционные пары	R	p
CNTF и зрительная функция	0,07	0,634
CNTF и стволовые функции	-0,13	0,417
CNTF и пирамидные функции	0,10	0,533
CNTF и мозжечковые функции	0,09	0,548
CNTF и сенсорные функции	-0,09	0,571
CNTF и тазовые функции	-0,09	0,575
CNTF и функция мышления	0,01	0,966
CNTF и ambulation	0,20	0,194
CNTF и общий балл EDSS	0,22	0,153
CNTF и средний показатель оценки	0,24	0,127
функции верхних конечностей MSFC	- 7	- ,
CNTF и средний показатель оценки	0,10	0,542
функции нижних конечностей MSFC	,	,

Концентрация CNTF в сыворотке крови у пациентов, ранее не лечившихся иммуномодулирующими препаратами (16 человек), колебалась в диапазоне 1,60 - 233,70 пг/мл. Среднее значение нейтротрофина в данной группе составило 71,35 (26,3-95,10) пг/мл.

Концентрация CNTF в сыворотке пациентов, лечившихся интерферонами (17 человек), составила 40,30(5,28-19,40) пг/мл. Достоверных различий со значением соответствующего показателя наивных пациентов выявлено не было.

Изучена концентрация CNTF у 24 человек, получавших терапию моноклональными антителами. Значения данного параметра колебались в диапазоне 1,10 - 254,80 пг/мл, при этом медиана составила 74,60 (26,60-119,85) пг/мл, что не отличалось от аналогичного значения группы наивных пациентов.

Динамика CNTF в процессе терапии натализумабом, прослеженная методом парных сравнений, показала отсутствие положительного влияния препарата на данный нейротрофин (табл.8).

Таблица 8. Концентрация CNTF в сыворотке до и через 6 месяцев терапии моноклональными антителами

Статистический	CNTF сыворотки крови пг/мл		Значимость
метод	До лечения	После лечения	различий р
Метод парных	56,60 (13,30-90,70)	57,05 (14,45-81,65)	
сравнений	(n=12)	(n=12)	$p^{W}=0,937$
Сравнение	56,60 (13,30-90,70)	74, 60 (26,60-119,85)	
независимых	(n=12)	(n=24)	$p^{M-W}=0,977$
переменных	(11–12)	(11-24)	

Проведенный анализ показал, что терапия моноклональными антителами в течение 6-ти месяцев не оказала существенного влияния на уровень CNTF в сыворотке крови пациентов.

Таким образом, исследованные варианты ПИТРС, по нашим данным, не способствуют стимуляции нейропластичности.

Однако, клиническая динамика при лечении интерферонами, финголимодом и моноклональными антителами была положительной. Так, при лечении интерферонами уменьшилась психическая астения, отмечена положительная динамика показателя 9-НРТ.

При лечении моноклональными антителами уменьшилась физическая астения до лечения ее балл составил 13 (8-16), после 11 (5-12), (p^W = 0, 023).

Сравнение выраженности неврологических расстройств, оцененных по шкале EDSS до лечения натализумабом и после полугода терапии, показало наличие положительной динамики состояния пациентов. EDSS после лечения равнялась 4,0 (3,0-4,5) баллам, что было достоверно лучше, чем до начала терапии ($p^W = 0,021$).

При лечении финголимодом повысилось качество жизни (физический компонент) по шкале MSIS-29.

Среднее значение физического компонента по шкале качества жизни MSIS-29 до лечения составило 31,5(24,5-45,5) баллов, через 6 месяцев терапии финголимодом данный показатель снизился до 23,5(21,5-31,5) баллов, p=0,028. Среднее значение психического компонента по шкале MSIS-29 составило 16, 5 (11-24), после 6-месячного лечения - 11,5(9,5-14,0), p=0,116. Таким образом, терапия финголимодом улучшает физический компонент качества жизни больных PC.

Обращает на себя внимание высокая чувствительность к положительным сдвигам клинической картины заболевания, происходящим в процессе лечения, 9-Hole Peg Test. Результаты выполнения данного теста, улучшившиеся после 6 месяцев лечения всеми изученными вариантами ПИТРС (натализумабом, интерферонами и финголимодом), представлены в таблице 9.

Таблица 9. Динамика показателя теста 9-Hole Peg Test у пациентов с рассеянным склерозом при различных вариантах ПИТРС

Варианти пенения	Tест 9-Hole Peg Test (сек)		Значимость
Варианты лечения	До лечения	После лечения	различий p^w
Терапия			
финголимодом	32,70 (29,98-37,57)	21,04 (19,28-25,62)	0,017
(n=8)			
Терапия			
натализумабом	33,81 (31,34-37,13)	24,90 (21,37-31,57)	0,000
(n=15)			
Терапия			
интеферонами	34,32 (31,44-34,87)	23,47 (21,36-25,55)	0,007
(n=9)			

выводы

- 1. Для больных рассеянным склерозом характерна исходная недостаточность мозгового нейротрофического фактора, что проявляется низкой по сравнению с популяционным уровнем его концентрацией в сопряженной длительностью сыворотке крови, не c Нейротрофическая несостоятельность сопряжена c неблагоприятным течением заболевания, поскольку коррелирует со стволовыми нарушениями, а также с одной из основных характеристик выраженности мозгового и спинального повреждения при рассеянном склерозе - амбулаторным индексом.
- 2. Цилиарный нейротрофический фактор, отсутствующий в свободных средах в норме, экспрессируется у пациентов рассеянным склерозом, высвобождаясь из поврежденных аксонов и обеспечивая трофику и поддержку нейронов после повреждения, о чем свидетельствует положительная корреляция между когнитивными функциями и его концентрацией в сыворотке крови.
- 3. Концентрация мозгового нейротрофического фактора в сыворотке крови у пациентов, получающих интерфероны и натализумаб, ниже, чем у пациентов, ранее не получавших ПИТРС, а цилиарного не отличается от концентрации у наивных пациентов.
- 4. Терапия в течение 6 месяцев интерферонами-бета, натализумабом и финголимодом оказывает положительное действие на течение рассеянного склероза, уменьшая неврологический дефицит (особо чувствительным к выявлению его динамики является 9-луночный тест), астению, повышая качество жизни и препятствуя развитию обострений, но в механизмах их терапевтического воздействия нейротрофические механизмы участия не принимают.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. В комплекс лечения больных ремиттрирующим рассеянным склерозом, не получающих ПИТРС, следует включать препараты, обладающие нейропротективными свойствами, поскольку у них имеется первичная недостаточность BDNF.
- 2. Больные с ремиттирующим рассеянным склерозом, получающие интерфероны, финголимод или натализумаб, должны

дополнительно лечиться нейротрофическими препаратами, так как эти ПИРТС не обладают свойством стимулировать нейротрофические механизмы.

3. Для определения индивидуальной чувствительности к ПИТРС на ранних этапах лечения следует использовать 9- Hole Peg Test, поскольку он обладает максимальной чувствительностью к положительным сдвигам, происходящим в процессе лечения.

СПИСОК НАУЧНЫХ РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. Трушникова Т.Н. Мозговой и цилиарный нейротрофические факторы у пациентов с рассеянным склерозом /Т.Н.Трушникова, Е.Л.Медведева, Т.В.Байдина, М.А. Данилова// Журнал неврологии и психиатрии им. С.С. Корсакова Рассеянный склероз. Москва, 2014.- Т.114, № 10, вып.2: С. 33-36 (из перечня ВАК).
- 2. Медведева Е.Л. Изучение количественного содержания мозгового нейротрофического фактора в сыворотке у пациентов с рассеянным склерозом, ранее не получавших иммуномодулирующей терапии. Пермский медицинский журнал. /Е.Л.Медведева// Пермский медицинский журнал. 2015. № 1. С. 56-60 (из перечня ВАК).
- 3. Медведева Е.Л. Динамика неврологического статуса и мозгового нейротрофического фактора у больных рассеянным склерозом на фоне терапии финголимодом и моноклональными антителами / Е.Л., Медведева, Т.В. Байдина //Современные проблемы науки и образования. − 2015. − № 2; URL: http://www.science-education.ru/122-19432 (из перечня ВАК).
- 4. Медведева Е.Л. Мозговой нейротрофический фактор у больных рассеянным склерозом на фоне терапии интреферонами /Е.Л.Медведева, Т.В.Байдина, Т.Н. Трушникова // Нейроиммунология. Рассеянный склероз. Санкт-Петербург, 2015. Том XII.- № 1-2. С. 70.
- 5. Медведева Е.Л. Нейротрофические факторы в сыворотке крови пациентов с рассеянным склерозом /Е.Л.Медведева// Развитие диагностики и лечения заболеваний нервной системы: сборник научно-исследовательских работ межрегиональной научной конференции неврологов, детских неврологов и нейрохирургов. Киров, 2014. С. 67-71.

- 6. Медведева Е.Л. Цилиарный нейротрофический фактор в сыворотке крови больных рассеянным склерозом и влияние на него терапии моноклональными антителами /Е.Л.Медведева, Т.В. Байдина// Новое в науке: современные проблемы и тенденции: материалы научно практической конференции Нефтекамск, 2015. С. 12 -14.
- 7. Медведева Е.Л. Мозговой нейротрофический фактор в сыворотке крови у больных с рассеянным склерозом при различных вариантах иммунотерапии /Е.Л.Медведева, Т.В.Байдина, Трушникова Т.Н.//Вестник Новосибирского филиала Всероссийского Общества неврологов. Новосибирск, 2014.- №4 (17). С.65-69.
- 8. Медведева Е.Л. Уровень цилиарного нейротрофического фактора в сыворотке у больных рассеянным склерозом//Научная сессия ПГМА имени академика Е.А.Вагнера. «Навстречу 100-летию высшего медицинского образования на Урале». Пермь, 2014. С.43-45.
- 9. Медведева Е.Л. Мозговой нейротрофический фактор у пациентов с рассеянным склерозом на фоне лечения моноклональными антителами //Научная сессия ПГМУ имени академика Е.А.Вагнера. «Навстречу 100-летию высшего медицинского образования на Урале». Пермь, 2015. С.46-48.
- 10. Медведева Е.Л. Мозговой нейротрофический фактор в сыворотке крови пациентов с рассеянным склерозом, не получавших иммуномодулирующую терапию / Е.Л.Медведева, Т.В.Байдина //Вестник Новосибирского Государственного Университета.- Новосибирск, 2015.- Том 13.- выпуск 1. С. 82-83.
- 11. Медведева Е.Л. Цилиарный нейротрофический фактор у больных рассеянным склерозом на фоне терапии интереферонами / Е.Л.Медведева, Т.В.Байдина, Т.Н.Трушникова // Журнал неврологии и психиатрии им. С.С. Корсакова Рассеянный склероз. Москва, 2015.- Т.115, № 8, вып. 2: С. 68.

СПИСОК СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

9-HPT 9-Hole Peg test,

9-ти луночный тест

BDNF Brain-Derived Neurotrophic Factor,

Мозговой нейротрофический фактор

CNTF Ciliary Neurotrophic Factor,

Цилиарный нейротрофический фактор

EDSS Expanded Disability Status Scale,

Расширенная шкала ивалидности J. Kurtzke

HADS Hospital Anxiety and Depression Scale,

Госпитальная шкала тревоги и депрессии

MFI - 20 Multidimensional Fatigue Inventory,

Шкала субъективной оценки астении

MSIS - 29 Multiple Sclerosis Impact Scale,

Шкала влияния рассеянного склероза

MSFC Multiple Sclerosis Functional Composite,

Шкала функц. состояния при рассеянном склерозе

PASAT - 3 Paced Auditory Serial Addition Test,

Слуховой тест на сложение в заданном темпе

МРТ Магнитно-резонансная томография

ПИТРС Препараты, изменяющие течение рассеянного склероза

РС Рассеянный склероз