Матановская Татьяна Владимировна

Механические аспекты ремоделирования левого предсердия у пациентов с ишемической недостаточностью митрального клапана до и после реваскуляризации миокарда

14.01.05 - кардиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в государственном бюджетном образовательном учреждении высшего профессионального образования «Пермский государственный медицинский университет имени академика Е.А. Вагнера» Министерства здравоохранения Российской Федерации

Научный руководитель:

доктор медицинских наук, доцент

Орехова Екатерина Николаевна

Официальные оппоненты:

доктор медицинских наук, ведущий научный сотрудник группы функциональной и ультразвуковой диагностики Центра новых технологий ФГБУ «Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина» Минздрава России (г.Новосибирск)

Нарциссова Галина Петровна

доктор медицинских наук, заведующий отделением рентгенхирургических методов диагностики и лечения нарушения ритма сердца ГБУЗ ПК «Клинический кардиологический диспансер» (г.Пермь)

Щербенёв Владимир Михайлович

Ведущая организация:

Федеральное государственные бюджетное научное учреждение «Научноисследовательский институт кардиологии» (г. Томск).

С диссертацией можно ознакомиться в библиотеке ГБОУ ВПО ПГМУ им. академика Е.А. Вагнера Минздрава России (614990, г. Пермь, ул. Петропавловская, 26), с авторефератом на сайтах: www.psma.ru и www.vak.ed.gov.ru

Автореферат разослан «____» _____ 2016 г.

Ученый секретарь диссертационного совета доктор медицинских наук, профессор

Минаева Наталия Витальевна

Общая характеристика работы

Актуальность темы исследования

Широкая распространенность ишемической митральной недостаточности (ИМН) позволяет утверждать, что та, или иная её степень будет выявлена у каждого второго пациента, перенесшего инфаркт миокарда (ИМ) (Levine R.A., et.al., 2005, Bouma W., et.al., 2010). Для этой группы больных одним из компонентов лечения остаётся хирургическая реваскуляризация, так как в большинстве случаев имеется множественное поражение коронарных артерий (Benjamin M.M., et.al., 2014, Valuckine Z., et.al., 2015). Основная эффекторная камера при хронической ИМН – левое предсердие (ЛП) (Garsse L., et.al. 2013). Рутинная оценка геометрических характеристик предсердия не позволяет судить о его функции, обнаружить связь с тяжестью регургитации и определить её гемодинамическую значимость. Эхокардиографические (ЭхоКГ) показатели деформации (strain, S) и скорости деформации (strain rate, SR) ЛП – современный инструмент для количественной оценки механической функции предсердия, являющийся более ранним и чувствительным маркёром объемной перегрузки и структурного ремоделирования, по сравнению с изменениями размеров и объёмов предсердия (Vieira M.J., et.al. 2014). Рядом авторов было показано, что нормальные значения деформации ассоциированы с низким процентом фиброза ЛП, тогда как низкие значения деформации – с высоким уровнем структурного ремоделирования предсердия (Her A.Y.,et.al., 2012). Гипотеза нашего исследования: предсердные изменения деформации и скорости деформации могут меняться пропорционально тяжести ИМН и определять послеоперационную динамику функции ЛП. К настоящему времени данные об изменениях функциональных и механических параметров у больных с ИМН в зависимости от степени МР, до и после хирургической реваскуляризации в изолированном варианте или в сочетании с митральной аннулопластикой весьма ограничены (Cameli M., et.al., 2011; Garsse L., et.al., 2013).

Степень разработанности темы исследования

Несмотря на большое количество работ, посвященных изучению разных аспектов ремоделирования сердца у больных ИБС, данные об особенностях изменений геометрии, функции и механики ЛП у пациентов, перенесших ИМ и имеющих ИМН немногочисленны (Borg A.N., 2009, Shin M.S., 2009, Cameli M., Алёхин М.Н., 2012). Найдены единичные исследования, посвященные сравнительной оценке функциональных параметров ЛП у больных ИБС с ИМН и без неё до и после КШ и аннулопластики МК, с целью обнаружения предикторов несостоятельности митральной реконструкции (Garsse L., et.al. 2013). Исследований, оценивающих комплекс геометрических, функциональных и механических характеристик ЛП в зависимости от степени ИМН до и после КШ и митральной аннулопластики, в доступной литературе не найдено. Остаётся неясным, какие значения механических компонентов ремоделирования ЛП отражают тяжесть гемодинамического воздействия регургитации и детерминируют прогрессирование дисфункции предсердия после хирургической реваскуляризации как в изолированном варианте, так и в сочетании с митральной реконструкцией. Вышеизложенное определило выбор цели и задач настоящего исследования.

Цель исследования

Изучить механические аспекты ремоделирования левого предсердия у пациентов с ишемической недостаточностью митрального клапана до и после реваскуляризации миокарда.

Задачи исследования

- 1. Сопоставить результаты конвенциональных параметров геометрии и функции ЛП по данным двухмерной ЭхоКГ со значениями деформации и скорости деформации, полученными с использованием векторного анализа скорости движения эндокарда у здоровых лиц.
- 2. Изучить особенности геометрического, функционального и механического ремоделирования ЛП у больных с различной степенью ИМН.
- 3. Охарактеризовать динамику механической функции ЛП у пациентов с ИМН после изолированной хирургической реваскуляризации и коронарного шунтирования в сочетании с коррекцией митральной недостаточности и провести клинико-эхокардиографические параллели, оценив функциональный класс сердечной недостаточности и наджелудочковые нарушения сердечного ритма.
- 4. Установить чувствительность, специфичность и прогностическое значение дооперационных ЭхоКГ показателей механического ремоделирования ЛП для послеоперационной динамики функции предсердия и на этом основании определить маркеры гемодинамической значимости ИМН.

Научная новизна исследования

Впервые предложены показатели механики ЛП как маркеры гемодинамической значимости ИМН: диапазон значений $S \leq S$ $20 \pm 4,9$ % и $\leq SR$ $0,16 \pm 0,09$ с⁻¹ в резервуарный период, SR в кондуитный период \geq «-» $0,27 \pm 0,1$ с⁻¹, S в насосную фазу \geq «-» $2,1 \pm 0,6$ % и SR в насосную фазу \geq «-» $0,68 \pm 0,2$ с⁻¹ ассоциированы с негативной динамикой функции предсердия. Описаны клинические аспекты, связанные с маркерами механической дисфункции ЛП: появление частой наджелудочковой экстрасистолии и фибрилляции предсердий, увеличение функционального класса CH. Дополнены представления о ремоделировании ЛП, дана комплексная оценка геометрических, функциональных и механических 9x0 F1 показателей, в зависимости от степени ИМН. Впервые представлены особенности динамики показателей механической функции ЛП у пациентов до и после хирургической реваскуляризации и коррекции митральной недостаточности.

Теоретическая и практическая значимость работы

Данные проведенного нами исследования непосредственно относятся к практической медицине и позволят расширить представление кардиологов и кардиохирургов, специалистов ультразвуковой диагностики о фазной механической функции ЛП и внедрить в рутинную практику использование метода оценки продольной деформации и скорости деформации ЛП в соответствующие фазы. Обоснована необходимость изучения показателей деформации и скорости деформации ЛП у пациентов с ИБС и ИМН для прогнозирования динамики функции предсердия на всех этапах диагностической и лечебной помощи, начиная с ЭхоКГ оценки значимости механического ремоделирования ЛП на амбулаторном этапе, заканчивая отделением сердечно-сосудистой хирургии. Мониторинг функционально-геометрических параметров деятельности ЛП позволяет

выделить группу пациентов с неблагоприятной послеоперационной динамикой СН, частой суправентрикулярной экстрасистолией и фибрилляцией предсердий, что предоставляет возможность кардиологу своевременно расширить диапазон лечебнодиагностических вмешательств.

Основные положения, выносимые на защиту

- 1. Пропорционально степени тяжести, ИМН сопряжена с механическим ремоделированием ЛП, что проявляется изменениями в показателях деформации и скорости деформации во все фазы деятельности предсердия.
- 2. Показатели деформации и скорости деформации в резервуарную фазу ЛП в наибольшей степени отражают гемодинамическое воздействие ИМН на механическое ремоделирование ЛП.
- 3. У больных ИМН исходные показатели деформации ЛП являются главными маркерами, определяющими ЛП функцию как после изолированного коронарного шунтирования, так и после хирургической реваскуляризации с митральной аннулопластикой.

Связь работы с научными программами

Диссертационная работа выполнена в соответствии с планом академии по комплексной теме «Механизмы возникновения, становления и развития атеросклероза, артериальной гипертонии и ассоциированных с ними заболеваний», государственная регистрация № 115030310059.

Введение результатов исследования в практику

Результаты работы внедрены в практику работы отделений функциональной диагностики и кардиохирургических отделений ФГБУ ФЦССХ (г. Пермь) МЗ РФ и ГБУЗ ПК «Клинический кардиологический диспансер».

Основные положения и результаты исследования включены в учебные программы подготовки студентов, интернов и ординаторов кафедры сердечно-сосудистой хирургии и инвазивной кардиологии ГБОУ ВПО «ПГМУ имени академика Е.А. Вагнера» Минздрава России.

Личный вклад автора в проведении исследования

На основании проведенного литературного обзора, практического опыта работы с пациентами автором была самостоятельно сформулирована гипотеза об изменениях показателей предсердной S и SR пропорционально тяжести MP, определена цель и задачи исследования, дизайн, критерии включения и исключения больных, соответствующие методы для реализации задач исследования, лично проведен осмотр (общеклинический и эхокардиографический) пациентов в динамике, подписаны информированные согласия на участие в исследовании. Автор систематизировал, статистически обрабатывал и обобщал полученные данные. Доля личного участия автора в планировании, организации и проведении исследования 80%.

Апробация работы

Апробация работы проведена на расширенном заседании кафедр терапевтического профиля с участием кафедры сердечно-сосудистой хирургии и инвазивной кардиологии ГБОУ ВПО «ПГМУ имени академика Е.А. Вагнера» Минздрава России от 17 ноября 2015 года (протокол № 3).

Результаты исследований представлены на XVII, XVIII Всероссийских съездах сердечно - сосудистых хирургов (Москва, февраль 2013, ноябрь 2013), международном конгрессе по эхокардиографии (Санкт-Петербург, сентябрь 2015).

Публикации

По теме диссертации опубликовано 10 печатных работ, из них 4 – в изданиях, рекомендованных ВАК РФ.

Структура и объем работы

Диссертация представляет собой рукопись, написанную на русском языке, представлена на 174 страницах машинописного текста и состоит из введения, 4 глав, обсуждения результатов, выводов, практических рекомендаций и списка литературы, который содержит 95 источников (18-отечественных, 77 зарубежных авторов). Работа иллюстрирована 32 таблицами и 48 рисунками, 2 клиническими примерами.

Содержание работы

Материал, методы и дизайн исследования

Обследовано 70 больных ИБС, стенокардией напряжения III-IV функционального класса, перенесших ИМ, с ИМН I-III степени, в возрасте от 33 до 77 лет (средний возраст 58,4±8,2 года).

Критерии включения: ИБС, стенокардия напряжения выше II функционального класса (по классификации Канадской ассоциации кардиологов, ССЅ) у ранее перенесших ИМ пациентов; множественное комплексное поражение коронарных артерий по данным селективной коронарографии, требующих хирургической реваскуляризации; ЭхоКГ критерии ИМН, соответствующие I-III степени; синусовый ритм во время регистрации данных ЭКГ и Эхо-КГ с частотой сердечных сокращений 59-89 в минуту.

Критерии исключения из исследования: несоответствие обозначенным критериям включения в исследование; наличие не ишемических или сочетанных изменений МК (кальциноз фиброзного кольца или створок, подклапанных структур, фиброз створок МК и подклапанных структур, пролапс створок МК, элонгация, отрыв хорд, инфекционный эндокардит); комбинированное поражение клапанного аппарата сердца; визуализация сопутствующие врожденные тромбов полостях сердца; пороки некоронарогенные заболевания сердца; наличие легочной гипертензии, ассоциированной с патологией органов дыхания, перенесенной тромбоэмболией легочной артерии; невозможность выполнить полную хирургическую реваскуляризацию периферического или диффузного характера поражения дистального коронарного русла; отказ кардиохирурга в оперативном лечении ввиду высокого хирургического риска бивентрикулярная недостаточность, полиорганная (выраженная недостаточность, хронические тяжелые сопутствующие заболевания стадии декомпенсации, новообразования); злокачественные наличие острого коронарного синдрома; установленный искусственный водитель ритма; хроническое течение фибрилляции предсердий. Группу сравнения составили здоровые взрослые лица (n=30) в возрасте от 28-64 лет (в среднем 48±9,8 лет). Дизайн исследования был открытым, проспективным, параллельным, контролируемым (рисунок 1).

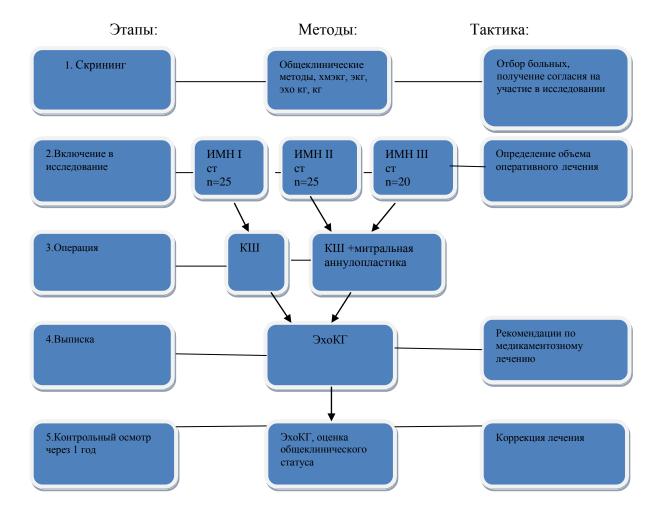


Рисунок 1- Дизайн исследования

После этапа скрининга (І этапа) были проанализированы следующие данные: жалобы, анамнез заболевания, осмотр, общеклинические лабораторные тесты рентгенография органов грудной клетки в прямой проекции, ЭКГ, ЭхоКГ, исследование показателей S и SR с использованием технологии векторного анализа скорости движения эндокарда (syngo Velocity Vector Imaging technology, VVI), суточное мониторирование ЭКГ, коронарная ангиография. Исходя из полученных клинических данных, результатов не инвазивных тестов, коронарографии, с учетом современных рекомендаций (Nishimura R.A., Otto C.M, Bonow R.O., et.al. 2014) предпочтений оперирующего хирурга пациентам был предложен вариант изолированной хирургической реваскуляризации или КШ с дополнительной аннулопластикой МК (III этап). Больным I группы была выполнена реваскуляризация миокарда (3,4±1,3 дистальных анастомоза). Пациентам II группы выполнено КШ (4±1,3 анастомоза) и аннулопластика МК. Больным III группы выполнено КШ (3,5±1,3 анастомоза) и аннулопластика МК. Перед выпиской из стационара проводилась ЭхоКГ с оценкой показателей S и SR (IV этап), назначалась сопоставимая базисная терапия в соответствии с действующими рекомендациями: антиагреганты, селективные бетаангиотензин-превращающего адреноблокаторы, ингибиторы фермента/блокаторы рецепторов ангиотензина, статины, диуретики (по показаниям). Контрольное обследование проводили через 12,9±1,3 месяца после операции (в среднем через год), оценивались симптомы СН, данные суточного мониторирования ЭКГ, ЭхоКГ, при необходимости выполнялась коррекция медикаментозного лечения (5 этап).

Трансторакальное ЭхоКГ исследование проводили на аппарате Acuson S 2000 (Siemens Medical Systems, Mountain View, CA, USA), оснащенном датчиком 4V1с. Информацию о систолической функции ЛЖ получали при оценке конечного систолического и (КСО, КДО) и диастолического объемов ЛЖ фракции выброса модифицированным биплановым методом Simpson. При дальнейшем анализе объемов ЛЖ использовались индексированные показатели к площади поверхности тела. Для объективизации оценки глобальной продольной систолической деформации ЛЖ использовали VVI анализ. Количественная оценка MP (квантификации степени с I по III) проводились с вычислением индекса площади потока струи регургитации к площади ЛП (в %) и измерялась ширина vena contracta (v.c., в мм). Для комплексной ЭхоКГ оценки ЛП изучены показатели, характеризующие геометрические параметры: (размеры, площади, объёмы), функциональные данные (изменение объемов и их индексов в различные фазы деятельности предсердия: максимальный, минимальный и Р-объем). С целью изучения ЛΠ были получены следующие функциональные показатели: функции характеристики проводниковой функции (кондуитная фаза ЛП) изучали объём пассивного опустошения ЛП (как разность максимального и Р – объёма, мл) и фракцию пассивного опустошения ЛП (ФПО ЛП) = объём пассивного опустошения ЛП/максимальный объем ЛП х 100%; для описания сократительной функции ЛП (насосная фаза) вычисляли объём активного опустошения предсердия (разность Р - объёма и минимального объёма) и фракцию активного опустошения ЛП (ФАО ЛП) = объём активного опустошения ЛП/Р объём х 100%. Для изучения накопительной функции предсердия (фазы резервуара) получали объём заполнения (ОЗ, разность максимального и минимального объемов ЛП) и его фракцию (ФОЗ ЛП) = ОЗ/максимальный объём х 100% и индекс расширения (ИР, соотношение объёма заполнения ЛП к его минимальному объёму). Для получения данных о S и SR ЛП использовали VVI – анализ. Оценивали резервуарную деформацию (максимальный позитивный пик на полученном изображении кривой S на участке от комплекса QRS и момента закрытия створок МК до открытия створок МК, в %) и скорость деформации в резервуарную фазу (позитивный пик SR, в c^{-1}) ЛП. Эти значения отражают накопительный период деятельности ЛП и совпадают с периодом систолы ЛЖ. Изучали SR в кондуитную фазу предсердия – пиковая ранняя скорость диастолической деформации, SR (в с⁻¹, совпадает с периодом ранней диастолы ЛЖ), определяли как первый негативный пик на полученной кривой SR от момента открытия створок МК до зубца Р на ЭКГ. Пиковую негативную деформацию, отражающую механику предсердия в сократительную (насосную) фазу, определяли как максимальный негативный пик на участке генерированной кривой деформации от зубца Р до QRS на ЭКГ. На полученной кривой SR на отрезке от зубца Р до QRS на ЭКГ определяли второй негативный пик, характеризующий SR в фазу сокращения ЛП (в с⁻¹, совпадает с периодом поздней диастолы ЛЖ). Проводилась посегментарная оценка параметров S и SR по 3 точкам ЛП, выбранным в проекции четырёх камер (медиальный уровень межпредсердной перегородки, боковой стенки предсердия и крыши ЛП в зоне межвенозной площадки), и двум точкам в проекции двух камер (медиальный уровень передней и задне-нижней стенок предсердия). Вышеперечисленные значения получали в трёх последовательных циклах, суммировали, затем усредняли.

Статистическая обработка материалов исследования

Статистический анализ материала проводился при помощи программ STATISTICA версии 10, MedCalc версии 12.1.1. Количественные данные представлены в виде значения среднего (M) и стандартного отклонения (SD). Оценка статистической значимости различий (р) между группами проводилась с использованием параметрических критериев (при нормальном распределении признака)-двухвыборочный t-критерий Стьюдента для сравнений средних (M±SD). Сравнение показателей с распределением, отличающимся от нормального, проводилось с использованием U-критерия Манна-Уитни. Сравнение качественных признаков проводилось с использованием двустороннего критерия Фишера. Для проверки значимости связи между двумя качественными переменными применяли критерий $\chi 2$. Для проверки значимости различий показателей между средними значениями у больных с I, II и III степенью ИМН проводился дисперсионный анализ (ANOVA). Различия показателей считались статистически значимыми при p<0,05. Для оценки связи функциональных и механических показателей использовали коэффициент ранговой корреляции Спирмена. C помощью множественного логистического регрессионного анализа определяли предикторную ценность параметров S и SR в функциональных показателей ЛП после отношении динамики изолированной хирургической реваскуляризации и КШ и митральной аннулопластики (Боровиков В.П.). Для проверки эффективности показателей S и SR в качестве диагностического теста использовался ROC – анализ (Receiver Operating Characteristic) и определялась площадь под кривой (AUC, Area Under Curve).

Результаты исследований и их обсуждение

Первоначальным этапом работы стало изучение и сопоставление геометрических, функциональных и механических показателей ЛП здоровых лиц для получения диапазона нормативных значений S и SR в разные фазы работы ЛП (таблица 1).

Таблица 1 - Характеристика механических показателей в различные фазы деятельности ЛП в группе сравнения

Фаза деятельности ЛП	Показатель механической	M±SD
	функции	
Резервуарная	S (%)	41,1±15,6
	SR (c ⁻¹)	0,8±0,26
Кондуитная	SR (c ⁻¹)	«-»1,1±0,6
Насосная	S (%)	«-» 4,1±1,3
	SR (c ⁻¹)	«-»1,7±0,3

Проанализирован посегментарный вклад стенок ЛП у здоровых лиц. Наибольшее участие в механике предсердия имеет задне-нижняя и передняя, в меньшей степени боковая стенка и межпредсердная перегородка. Показатели продольной механической функции крыши ЛП минимальны, что связано с анатомическими и структурными особенностями межвенозной площадки.

Для характеристики резервуарной функции ЛП рассчитан ИР, который у здоровых лиц составил 0.98 ± 0.4 , что означает практически 100% разницу в динамике между максимальным и минимальным объемами ЛП и подтверждает адекватную растяжимость ЛП для осуществления накопительной функции. Выявлена сильная прямая корреляция продольной S ЛП в резервуарную фазу и ИР ЛП (R_s = 0.72), SR ЛП в фазе резервуара и ИР ЛП (R_s = 0.6).

Для характеристики кондуитной фазы ЛП вычислялась ФПО (29,1 \pm 11,4 %) и механические значения SR ЛП в кондуитную фазу («-» 1,1 \pm 0,6 c⁻¹). Выявлена сильная обратная корреляция ФПО ЛП и SR предсердия в кондуитную фазу (R_s = -0,75).

Для описания насосной фазы (систолической функции предсердия) анализировались геометрические данные (индекс p-объёма, $20,3\pm4,6$ мл/м²; индекс минимального объема $14,5\pm4,2$ мл/м²), функциональный показатель — ФАО ЛП (28 ± 11 %), механические значения S («-» $4,1\pm1,3$ %) и SR («-» $1,7\pm0,3$ с¹) в насосную фазу. Обнаружена обратная умеренная корреляция S ЛП в насосную фазу и ФАО ЛП (R_s = -0,55), SR в насосную фазу и ФАО ЛП (R_s = -0,44). Таким образом, S и SR тесно связанны с функциональными показателями ЛП в соответствующие фазы.

Для изучения особенностей функционального ремоделирования ЛП у пациентов с ИБС и ИМН, проанализированы данные фазовой функции предсердия. Отсутствовала статистически значимая разница в показателях ФОЗ между здоровыми лицами и пациентами с ИМН в условиях значимого снижения ФПО и ФАО, что свидетельствует не о сохранности резервуарной функции у больных с умеренной МР, а о добавочном «вкладе» в объём заполнения регургитирующего митрального объёма, что подтверждается выраженной корреляцией ширины самой узкой части струи регургитации на уровне створок МК (v.c. 4.8 ± 0.8 мм) и Φ O3 ($20 \pm 11.1\%$, R_s =0,7) у больных с умеренной ИМН. У пациентов III группы ФПО и ФАО были ниже, чем у больных II группы (ФПО: II группа - 12.8 ± 9 % против 9.9 ± 9 % III группы, p=0.3; ФАО: II группа - 15.5 ± 9.3 % против $13.1 \pm$ 11,7% ІІІ группы, p=0,4), что подтверждает сопоставимость гемодинамического воздействия MP II и III степени на угнетение кондуитной и насосной функции ЛП. Выявлено, что ИР был недостоверно больше у больных с ИМН I степени в сравнении со здоровыми обследованными $(1,14 \pm 2,9 \text{ и } 0,99 \pm 0,4, p=0,8)$, что объясняется наличием MP. У больных с умеренной и выраженной ИМН обнаружено значимое снижение ИР, по сравнению с группой сравнения (II группа 0.4 ± 0.2 против 0.99 ± 0.4 группы сравнения, p=0.00001; III группа 0.32 ± 0.4 против 0.99 ± 0.4 группы сравнения, p=0.00001). Однако ИР у больных II и III групп статистически значимо не различался $(0.4 \pm 0.2 \text{ и } 0.32 \pm 0.4)$; p=0,4), что указывает на однонаправленность влияния ИМН II и III степени на депрессию резервуарной функции.

Показатели S и SR в резервуарную фазу предсердия снижались пропорционально тяжести ИМН. Несмотря на дополнительный регургитирующий митральный объём, поступающий в ЛП в резервуарную фазу, S была значимо снижена у всех пациентов с ИМН (группа сравнения - 41.1 ± 15.6 %, I группа - 28.5 ± 12 %, p=0,001; II группа - 22.9 ± 6.2 %; pI-pII=0,004; III группа - 18.8 ± 9.2 %; pI-pIII=0,003; pII-pIII=0,08). В резервуарную фазу SR была так же снижена у больных с ИМН (группа сравнения 0.8 ± 0.26 с⁻¹, I группа 0.34 ± 0.2 с⁻¹, p=0,00002; II группа 0.2 ± 0.1 с⁻¹; pI-pIII=0,002; III группа 0.16 ± 0.1 с⁻¹; pI-pIII=0,002; pII-pIII=0,47). В кондуитную фазу SR была снижена у пациентов с ИМН (группа сравнения «-» 1.1 ± 0.6 с⁻¹, I группа «-» 0.8 ± 0.3 с⁻¹, p=0,04; II группа «-» 0.5 ± 0.47 с⁻¹; p I - p II=0,004; III группа «-» 0.48 ± 0.24 с⁻¹; pI-pIII=0,0003; pII-pIII=0,9). В группе сравнения выявлена сильная обратная корреляция ФПО и SR в кондуитную фазу (0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), для пациентов с ИМН такой значимой ассоциации не было обнаружено (в I группе 0.75), во II 0.750, в III - 0.751, в III - 0.752, в III - 0.753, в III - 0.753, в III - 0.754, в III группе сравнения 0.755, в III - 0.755, в III

снижению, по сравнению с нормальными значениями, но была статистически значимо снижена только у больных с ИМН II и III степени (группа сравнения «-» $4,1\pm1,3\%$, I группа «-» $4,2\pm1,4\%$, p=0,04; II группа «-» $3,5\pm1\%$; pI-pII=0,05; III группа «-» $2,4\pm1,1\%$; pI-pIII=0,00002; pII-pIII=0,08). В то время как в группе сравнения была выявлена умеренная обратная корреляция ФАО и S в насосную фазу (R_s = -0,55), для пациентов с ИМН такой ассоциации не было обнаружено (в I группе R_s = -0,01, во II R_s = -0,1, в III - R_s = 0,32). Следовательно, ФАО недостаточно описывает насосную дисфункцию предсердия при наличии ИМН. Насосная SR была значимо снижена у всех пациентов с ИМН (группа сравнения «-»1,7±0,3 c⁻¹, I группа «-» 1,3±0,2 c⁻¹, p=0,00003; II группа «-» 1,05±0,16 c⁻¹; p I-p III=0,00001; III группа «-» 0,96±0,3 c⁻¹; р I-p III=0,00000; р II-р III=0,21). Статистически значимой разницы SR в насосную фазу между больными II и III групп не выявлено, следовательно, угнетение механической функции в эту фазу у обследованных пациентов было сопоставимо.

Таким образом, у больных с ИМН выявлены признаки функционального и механического ремоделирования ЛП, увеличивавшиеся пропорционально выраженности регургитации. Резервуарная S и SR максимально снижались у пациентов с ИМН III степени, и минимально изменялись у больных с незначительной регургитацией. В кондуитную фазу показатели геометрии и функции свидетельствуют о снижении проводниковых способностей предсердия по мере увеличения степени регургитации на МК. Однако скорость деформации в кондуитную фазу в большей степени связана с давлением наполнения ЛЖ, чем с объёмами ЛП и ФПО. Значения S и SR в насосную фазу статистически значимо снижались у больных с ИМН II и III степени, что доказывает, негативное влияние даже умеренной степени МР на депрессию насосной функции ЛП.

Оценивалась динамика клинико-ЭхоКГ данных и механической функции ЛП у пациентов после хирургической реваскуляризации. Через год после операции ангинозных приступов не было, по результатам суточного мониторирования ЭКГ не обнаружено ишемических изменений. Значимо снизилась тяжесть СН за счёт отсутствия больных с III ф.к. в послеоперационном периоде (до операции с ІІІ ф.к. 7 больных-28% от группы, р=0,01; 16 больных-64% І ф.к., 9-39% ІІ ф.к.). Существенно не изменилось количество больных с наджелудочковой экстрасистолией (исходно 9 пациентов с редкой суправентрикулярной экстрасистолией - 36%, через год 7 - 28 %; количественно в среднем за сутки исходно 319 ± 120 , в час 13 ± 6 ; через год 289.3 ± 155.2 , в час 12 ± 5 , p=0.6). В одном случае был зафиксирован пароксизм фибрилляции предсердий длительностью 4 часа, купировавшийся медикаментозно (амиодарон) в стационаре (в дальнейшем в связи с частыми пароксизмами фибрилляции предсердий выполнена радиочастотная катетерная изоляция устьев легочных вен). У 3 пациентов (12%) выявлены частые наджелудочковые экстрасистолы после операции (в среднем за сутки 918±102, в час 38,2±4,2). Специальной коррекции терапии в виде назначения антиаритмических препаратов не потребовалось (все больные принимали бета-адреноблокаторы, в ряде случаев была увеличена их доза).

Не было выявлено статистически значимой послеоперационной динамики КДОи (ранний послеоперационный период $61,6\pm10,9$ мл/м², через год $64,2\pm8,7$ мл/м², p=0,3; с исходными данными p=0,058), КСОи (ранний послеоперационный период $41,4\pm11,7$ мл/м², через год $43,8\pm11,1$ мл/м², p=0,16; в сравнении с исходными данными p=0,47) и ФВ ЛЖ (ранний послеоперационный период $50,1\pm7,5$ %, через год $50\pm7,9$ %, p=0,6; в сравнении с исходными данными p=0,6).

Проанализирована динамика индексов объёмов ЛП: индекс максимального (в фазу резервуара, исходно $33,5\pm6,9$ мл/м²; в раннем послеоперационном периоде $31,8\pm6,3$ мл/м², p=0,3; через год $33,7\pm5,2$ мл/м², p=0,2), минимального (в насосную фазу, исходно $22,5\pm6$ мл/м²; в раннем послеоперационном периоде $21,2\pm4,5$ мл/м², p=0,6; через год $22,5\pm5$ мл/м², p=0,3) и p-объёмов (в кондуитную фазу, исходно $28,3\pm5,4$ мл/м²; в раннем послеоперационном периоде $26,9\pm5$ мл/м², p=0,3; через год $28,2\pm4,6$ мл/м², p=0,3). Отсутствовали изменения геометрических показателей ЛП у пациентов I группы в послеоперационном периоде. По сравнению с данными в группе сравнения, функциональные показатели фазной деятельности ЛП были снижены до операции и не достигли статистически значимой позитивной динамики за время наблюдения. ФПО имела тенденцию к увеличению (исходно $14,7\pm7,7\%$; в раннем послеоперационном периоде $13,6\pm9\%$, p=0,6; через год $16,4\pm8,4\%$; p=0,2), что свидетельствует о некотором улучшении проводниковой функции ЛП после хирургической реваскуляризации.

При оценке динамики механической функции ЛП в фазу резервуара выявлена тенденция к снижению S (до операции $28,5 \pm 12$ %, в раннем послеоперационном периоде $27 \pm 10,3$ %, p=0,6, через год $24,5 \pm 8,9$, p=0,1) и SR (до операции $0,34 \pm 0,19$ с⁻¹, в раннем послеоперационном периоде $0,33 \pm 0,26$ с⁻¹, p=0,9, через год $0,33 \pm 0,3$, p=0,8). Положительной динамики SR в кондуитную фазу ЛП так же не обнаружено (исходно «-» $0,47 \pm 0,5$ с⁻¹, в раннем послеоперационном периоде «-» $0,39 \pm 0,3$ с⁻¹, p=0,5; через год «-» $0,42 \pm 0,3$ с⁻¹; p=0,8). В послеоперационном периоде S и SR в насосную фазу имели тенденцию к снижению (до операции S «-» $4 \pm 1,4$ %, через год «-» $3,8\pm1$ %, p=0,44; SR до операции «-» $1,3\pm0,1$ с⁻¹, через год «-» $1,3\pm0,1$ с⁻¹, р=0,98).

Таким образом, у пациентов группы КШ в течение года наблюдения отмечена позитивная динамика в виде отсутствия симптомов стенокардии, уменьшения ф.к. СН. Выявлена тенденция к увеличению глобальной продольной систолической деформации ЛЖ и ФВ ЛЖ. Степень МР существенно не изменилась. Отсутствовала статистически значимая позитивная динамика геометрических, функциональных и механических изменений ЛП.

Пациентам II и III групп наблюдения выполнялось КШ (II группа $4 \pm 1,3$ дистальных анастомоза, III группа 3.5 ± 1.3 дистальных анастомоза, p=0,2) и митральная ринговая аннулопластика. Через 13 ± 1,4 месяца после операции (в среднем через год) среди пациентов II и III групп ангинозных приступов не было, по данным суточного мониторирования ЭКГ не было обнаружено изменений сегмента ST-T, типичных для ишемических, таким образом, показаний к проведению коронаро-шунтографии не было. В послеоперационном периоде во II группе пациентов по результатам суточного мониторирования ЭКГ обнаружено 15 больных – 60 % (до операции 17 пациентов - 68 %, р=0,78) с редкими суправентрикулярными парными и групповыми экстрасистолами (до операции в среднем за сутки 159.6 ± 130 , в час 6.6 ± 5.4 ; через год в сутки 167.3 ± 161.8 , в час 6.9 ± 6.7 p=0.12). Частые политопные наджелудочковые экстрасистолы до и после операции регистрировались у 2 больных (8% случаев: исходно в среднем за сутки 820±80, в час 34±3,3; через год после операции 1004,5±108, в час 41,8±4,5, p=0,16). Пациенты с частой суправентрикулярной экстрасистолией были симптомными: отмечали выраженный субъективный дискомфорт и перебои в работе сердца, сердцебиения. У одного пациента на фоне частой политопной суправентрикулярной экстрасистолии за время суточного мониторирования ЭКГ зарегистрировано 2 пароксизма суправентрикулярной тахикардии (с ЧСС 105 и 159 в минуту длительностью 15 и 18 минут, соответственно). Зафиксированы пароксизмы фибрилляции предсердий в 3 случаях (у 12 % больных), тогда как в дооперационном периоде фибрилляция предсердий не фиксировалась. У 4 (16 %) больных выявлены мономорфные желудочковые экстрасистолы (до операции у 5 больных, 20 %, p=0,75). В III группе пациентов по данным суточного мониторирования ЭКГ выявлено 14 больных – 70 % (исходно 14 пациентов - 70 %, p=1) с редкими парными и групповыми суправентрикулярными экстрасистолами (исходно в среднем за сутки 201,2 \pm 242,2, в час 8,3 \pm 10; через год в сутки 45,7 \pm 23,4, в час 2 \pm 1, p=0,049). Таким образом, в III группе больных после операции регистрировалось статистически значимое меньшее число редких суправентрикулярных экстрасистол, по сравнению со ІІ группой. Однако пациентов с частыми наджелудочковыми политопными экстрасистолами у больных III группы после операции выявлено больше: 6 случаев – 30 % (исходно 2 пациента - 10 %, р=0,1), против 2 случаев (8%) у больных ІІ группы (р=0,1). Количественно частые суправентрикулярные экстрасистолы у больных III группы в до- и послеоперационном периоде статистически значимо не различались (исходно в среднем за сутки 852 ± 56 , в час 35.5 ± 2.3 ; через год в сутки 1073.3 ± 207 , в час 44.7 ± 8.6 , p=0,07). Различий по количеству частых наджелудочковых экстрасистол в послеоперационном периоде между пациентами II и III группы не выявлено (в среднем за сутки II группа 1004,5±108, III группа 1073,3±207, p=0,1). Пароксизмы фибрилляции предсердий обнаружены по результатам суточного мониторирования ЭКГ у больных ІІІ группы в 5 случаях (25 %, в трёх случаях восстановление ритма произошло самостоятельно, в 2 случаях потребовалась медикаментозная кардиоверсия в условиях стационара), тогда как до операции пароксизмы зафиксированы у 2 больных (10 %, p=0,3). В дальнейшем у 4 больных с пароксизмальной фибрилляцией предсердий выполнена радиочастотная катетерная изоляция устьев легочных вен, в 4 случаях назначены непрямые антикоагулянты (варфарин с целевым МНО 2-3, в соответствии с определённым риском развития тромбоэмболических осложнений по шкале CHA2DS2-VASc ≥2 баллов и при низком риске кровотечений по шкале HAS-BLED -0 баллов). Пациенты II и III групп не различались в послеоперационном периоде по количеству больных с более лёгкими ф.к. СН (I и II ф.к.: во II группе - 52%, в III -50%, p=0,9) и с тяжелой СН (III-IV ф.к. СН: во II группе – 48%, в III - 40%, p=0,9).

Выявлено статистически значимое уменьшение КДОи и КСОи у пациентов II группы (с $80.7 \pm 24.2 \text{ мл/м}^2$ до $61.2 \pm 18 \text{ мл/м}^2$, p=0,01; с $58.2 \pm 24.7 \text{ мл/м}^2$ до $45.1 \pm 14.7 \text{ мл/м}^2$, p=0,03, соответственно), но через год дальнейшей позитивной динамики не наблюдалось и объемные показатели достигли дооперационных значений (КДОи: с $61.2 \pm 18 \text{ мл/м}^2$, до $71 \pm 19.5 \text{ мл/м}^2$, p=0,07; КСОи: с $45.1 \pm 14.7 \text{ мл/м}^2$, до $52.9 \pm 20.7 \text{ мл/м}^2$, p=0,1). Аналогичная динамика объёмных показателей выявлена у пациентов III группы: в раннем периоде отмечена положительная динамика (КДОи снизился с $92 \pm 18.3 \text{ мл/м}^2$, до $69 \pm 20.5 \text{ мл/м}^2$, p=0,0005; КСОи: с $70.8 \pm 18.3 \text{ мл/м}^2$, до $59 \pm 13.3 \text{ мл/м}^2$, p=0,02), но в дальнейшем статистически значимых изменений индексов объёмов ЛЖ не определялось (КДОи: $84.5 \pm 20.5 \text{ мл/м}^2$, p=0,2 по сравнению с данными до операции; КСОи: $59.5 \pm 14.3 \text{ мл/м}^2$, p=0,9 по сравнению с ранним послеоперационным периодом; p=0,03 в сравнению с исходными значениями). Через год после операции больные II и III групп статистически значимо не различались по КСОи (II группа $52.9 \pm 20.7 \text{ мл/м}^2$, III - $59.5 \pm 14.3 \text{ мл/м}^2$, p=0,2), но КДОи был большим в III группе (II группа - $71 \pm 19.5 \text{ мл/м}^2$, III - $84.5 \pm 20.5 \text{ мл/м}^2$, p=0,04). В

послеоперационном периоде ФВ ЛЖ имела тенденцию к увеличению (ІІ группа исходно: 43.9 ± 10.2 %, в раннем послеоперационном периоде 46.7 ± 10.1 %, p=0.3; через год после операции 46.1 ± 11.2 %, p=0.5; III исходно: 39.7 ± 10.5 %, в раннем послеоперационном периоде 42.2 ± 7.2 %, p=0.4; через год после операции 41 ± 8 %, p=0.7). Существенно снизился индекс нарушения локальной сократимости у пациентов II и III групп (II группа исходно 1.5 ± 0.3 , через год 1.3 ± 0.2 , p=0.01; III – исходно 1.6 ± 0.3 , через год 1.4 ± 0.2 , p=0,02). Глобальная продольная систолическая деформация у пациентов II и III группы имела тенденцию к улучшению (II группа до операции «-» 8.7 ± 2.6 %, через год «-» $9.5 \pm$ 2.8%, p=0,3; III – до операции «-» 7,7 ± 1,8 %, через год «-» 8,5 ± 2,1%, p=0,2; через год после операции р II-р III =0,2). MP статистически значимо снизилась в обеих группах наблюдения через год после аннулопластики МК (ІІ группа: исходно индекс площади потока регургитации 22.8 ± 3 % площади ЛП, через год 9.5 ± 10.2 % площади ЛП, p=0.001; v.c. исходно 4.8 ± 0.8 мм, через год 1 ± 1.5 мм, p=0,0001; III группа: индекс площади потока регургитации исходно 37.6 ± 6 % площади ЛП, через год 8.5 ± 4.2 % площади ЛП, p=0,006; v.c. исходно $6\pm1,9$ мм, через год $1,6\pm1,5$ мм, p=0,00001). Различия в послеоперационной MP между пациентами II и III групп не выявлены (для индекса площади потока MP p=0,8; для ширины v.c. p=0,7). Таким образом, очевидна реализация позитивного потенциала реваскуляризации и митральной аннулопластики в виде воздействия на обратное ремоделирование ЛЖ, ликвидации МР и уменьшения зон локальной асинергии.

В противоположность инверсии процессов ЛЖ ремоделирования, статистически значимых изменений в геометрических характеристиках ЛП не выявлено: индекс максимального объема ЛП (в фазу резервуара, II группа: исходно $41,6\pm10,3$ мл/м²; в раннем послеоперационном периоде $36,8\pm8,3$ мл/м², р=0,07; через год $39,7\pm10,3$ мл/м², р=0,4; III группа: до операции $48,9\pm11,3$ мл/м²; в раннем послеоперационном периоде $43,9\pm10,4$ мл/м², р=0,1; через год $49,1\pm11,4$ мл/м², р=0,9), минимального (в насосную фазу, II группа исходно $30,4\pm8,1$ мл/м²; в раннем послеоперационном периоде $26,7\pm7,7$ мл/м², р=0,1; через год $29,9\pm9$ мл/м², р=0,1; III группа: до операции $38,2\pm11,8$ мл/м²; в раннем послеоперационном периоде $34,2\pm12,4$ мл/м², р=0,3) и р-объёмов (в кондуитную фазу, II группа исходно $36,2\pm9,5$ мл/м²; в раннем послеоперационном периоде $31,9\pm7,7$ мл/м², р=0,08; через год $33,6\pm9$ мл/м², р=0,3).

Функциональные показатели фазной деятельности ЛП были исходно снижены и не достигли статистически значимой позитивной динамики за время наблюдения. После операции $\Phi\Pi O$ у больных II группы была больше, чем в III группе (14.6 ± 6 % и 9.7 ± 5.1 %, p=0,008, рис. 2). ФАО у больных II и III групп была значительно угнетена (II группа $16,1 \pm 11,7 \%$, III группа $13,3 \pm 9,7 \%$, p=0,2). Резервуарные функциональные показатели не имели значимых внутри и межгрупповых различий (ИР II группа: до операции 0,39 ± 0,2; в раннем послеоперационном периоде 0,41 \pm 0,2 %, p=0,1; через год 0,43 \pm 0,3 %; p=0.4; III группа: исходно 0.32 ± 0.3 %; в раннем послеоперационном периоде 0.34 ± 0.27 %, p=0,3; через год 0,31 \pm 0,21 %; p=0,9), что свидетельствует об отсутствии положительных изменений резервуарной функции ЛΠ после хирургической реваскуляризации и митральной аннулопластики.

Таким образом, функциональные показатели ЛП у пациентов после КШ и митральной аннулопластики демонстрируют отсутствие статистически значимой позитивной внутригрупповой и межгрупповой динамики насосной и резервуарной функций

предсердия, однако кондуитные (проводниковые) характеристики значимо ниже у пациентов III группы (рисунок 2).

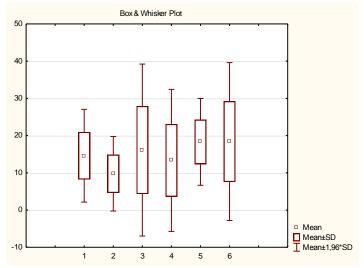


Рисунок 2 - Динамика функциональных показателей ЛП у пациентов II и III групп через год после хирургической реваскуляризации и митральной аннулопластики Примечание: Ось абсцисс: 1- ФПО ЛП (%) II группа. 2- ФПО ЛП (%) III группа. 3-ФАО ЛП (%) III группа. 4 – ФАО ЛП (%) III группа. 5. ФОЗ ЛП (%) III группа. 6. ФОЗ ЛП (%) III группа. Ось ординат: данные функциональных показателей в %

При оценке динамики механической функции ЛП в фазу резервуара выявлена тенденция к снижению продольной систолической S и SR в послеоперационном периоде (S II группа: исходно $22.9 \pm 6.2\%$; в раннем послеоперационном периоде $19.6 \pm 6.7\%$. p=0.07; через год 20.6 ± 8.3 %; p=0.8; III группа: исходно 18.8 ± 9.2 %; в раннем послеоперационном периоде 18.2 ± 10.6 %, p=0,8; через год 15.8 ± 6.8 %; p=0,2; SR II группа: до операции $0.2 \pm 0.1 \text{ c}^{-1}$, в раннем послеоперационном периоде $0.1 \pm 0.1 \text{ c}^{-1}$, p=0,01, через год $0,23\pm0,14$ c^{-1} , p=0,4; III группа: до операции $0,17\pm0,15$ c^{-1} , в раннем послеоперационном периоде 0.16 ± 0.17 c⁻¹, p=0.8, через год 0.11 ± 0.2 c⁻¹, p=0.9). Пациенты II и III групп статистически значимо различались по резервуарной механике в послеоперационном периоде (S 20.6 ± 8.3 % против 15.8 ± 6.8 %; p=0.04; SR 0.23 ± 0.14 c⁻¹ против 0.11 ± 0.2 с⁻¹, p=0.03). Самые сниженные показатели S и SR в резервуарную фазу выявлены у пациентов с дооперационной ИМН III степени, сохранявшиеся наиболее низкими в течение всего периода наблюдения. Механика насосной фазы существенно не изменилась во II и III группах (II группа S исходно: «-» 3.5 ± 1 %, через год «-» 3.5 ± 0.9 %, p=0,7; III группа S исходно: «-» 2,4 ± 1,1%, через год «-» 1,98± 1,1 %, p=0,2; SR II группа исходно «-»1,04 \pm 0,14 c^{-1} , через год «-»1,1 \pm 0,1 c^{-1} , p=0,06; SR III группа исходно: «-» 0,96 \pm $0.27c^{-1}$, через год «-» $0.84 \pm 0.1c^{-1}$, p=0.1).

Обнаружена значительная обратная корреляция динамики ФАО через год после операции и исходных значений S (R_s =-0,72) и SR (R_s =-0,7) в насосную фазу у больных II и III групп. Выявлена значительная обратная корреляция ФПО после операции и SR в кондуитную фазу ЛП до операции (R_s =-0,87). Таким образом, динамика послеоперационной функции ЛП в значительной мере определяется исходными показателями S и SR ЛП в соответствующие фазы.

Для выявления предикторной роли механических показателей ЛП в прогнозе послеоперационной функции предсердия изучены S и SR в резервуарный, кондуитный и насосный период до операции.

Резервуарный период. В зависимости от динамики ИР в послеоперационном периоде пациенты I, II и III групп (n=70) были разделены на 3 подгруппы: 1 - с позитивной послеоперационной динамикой (n=26); 2 - с отсутствием изменений ИР (n=13); 3 - с негативной динамикой (n=31). Геометрические параметры ЛП (максимальный длинник, индекс максимального объёма ЛП), функциональные ЛЖ показатели (ФВ, продольная систолическая деформация), степень ИМН до операции статистически значимо не различались между пациентами с различной послеоперационной динамикой функции ЛП. Значимые различия между подгруппами выявлены для значений S и SR в резервуарную фазу ЛП. Исходные данные S (коэффициент множественной корреляции 0,89, скорректированный коэффициент множественной детерминации 0.8, p=0.0000) и SR в резервуарную фазу (коэффициент множественной корреляции 0,79, коэффициент детерминации 0,75, скорректированный коэффициент множественной детерминации 0,74, р=0,0000) независимые предикторы резервуарной функции (ИР ЛП) в послеоперационном периоде. Геометрические характеристики ЛП (максимальный длинник, индекс максимального объема), функциональные ЛЖ параметры (ФВ, S ЛЖ), объём оперативного вмешательства, степень МР предикторной ценности в отношении динамики ИР не имели. Уравнение взаимосвязи между динамикой ИР после операции и деформацией и скоростью деформации ЛП в резервуарную фазу ЛП до операции имеет вид: $Y = \ll 0.17 + 0.02 \times X1 + 0.63 \times X2$ (где Y - прогнозируемый ИР ЛП после операции; Х1- деформация в резервуарную фазу в % до операции; Х2-скорость деформации в резервуарную фазу в с⁻¹ до операции).

Кондуитный период. В зависимости от динамики ФПО ЛП в послеоперационном периоде пациенты I, II и III групп (n=70) были разделены на 3 подгруппы: 1 - с позитивной послеоперационной динамикой (n=21); 2 - с отсутствием изменений (n=18); 3 - с негативной динамикой (n=31). Значения геометрических параметров (p-длинник, индекс р-объёма ЛП), показатели трансмитрального кровотока (Е), Е/Е', степень ИМН до операции статистически значимо не различались между подгруппами. Предикторная ценность изученных показателей для динамики ФПО ЛП через год после операции оценена в регрессионном анализе. Исходная величина скорости деформации в кондуитную фазу – независимый предиктор ФПО ЛП после операции (коэффициент множественной корреляции 0,81, коэффициент детерминации 0,77, скорректированный коэффициент множественной детерминации 0,76, p=0.0000). Геометрические характеристики ЛП (р-длинник, индекс р-объема), исходные значения, характеризующие давление наполнения ЛЖ (Е/Е'), дооперационные значения МР, объём оперативного вмешательства предикторной ценности в отношении послеоперационной динамики ФПО ЛП не имели. Уравнение взаимосвязи между динамикой ФПО ЛП после операции и скоростью деформации ЛП в кондуитную фазу до операции имеет вид: Y= «-» 7,3 + («-» 10,8) х X1 (где Y – прогнозируемая ФПО ЛП после операции; X1- скорость деформации в кондуитную фазу в c^{-1} , со знаком «-» до операции).

Насосный период. В зависимости от динамики ФАО ЛП в послеоперационном периоде пациенты I, II и III групп (n=70) были разделены на 3 подгруппы: 1 - с позитивной послеоперационной динамикой (n=18); 2 - с отсутствием изменений (n=25); 3 - с

негативной динамикой (n=27). Геометрические параметры ЛП до операции (минимальный длинник, индекс минимального объёма ЛП), диастолическая скорость трансмитрального потока в позднюю диастолу, МР до операции статистически значимо не различались между подгруппами с различной функциональной динамкой ЛП после операции. Независимым предиктором насосной дисфункции в послеоперационном периоде оказались дооперационные значения SR в насосную фазу (коэффициент множественной 0,78, коэффициент детерминации 0,7, скорректированный коэффициент множественной детерминации 0,68, p=0,0000) и S в насосную фазу (коэффициент множественной корреляции 0,68, коэффициент детерминации 0,67, скорректированный коэффициент множественной детерминации 0,67, p=0,0000). Уравнение взаимосвязи между динамикой ФАО ЛП после операции и деформацией и скоростью деформации ЛП в насосную фазу до операции имеет вид: $Y = \langle - \rangle$ 6,2 + ($\langle - \rangle$ 4,4) x X1+ ($\langle - \rangle$ 7,7) x X2 (где Y – прогнозируемая ФАО ЛП после операции; Х1- деформация в насосную фазу, в % со знаком «-» до операции; X2-скорость деформации в насосную фазу в c^{-1} , со знаком «-» до операции). Геометрические характеристики ЛП (минимальный длинник, индекс минимального объема), максимальная скорость трансмитрального кровотока А, степень МР, объём оперативного вмешательства предикторной ценности в отношении послеоперационной динамики ФАО не обнаружили.

Для подтверждения надежности показателей S и SR у больных с ИМН в качестве диагностического теста, которым можно воспользоваться для определения прогноза для послеоперационной функции ЛП, проведена оценка чувствительности и специфичности показателей S и SR в соответствующие фазы деятельности ЛП. Максимальное влияние на прогноз развития резервуарной дисфункции ЛП после операции выявлено для деформации в фазу резервуара (отношение шансов, Odds Ratio, OR 5,1/0,26; OR±SE= $19,1\pm0,61$). Наибольшей чувствительностью (96,2 %, AUC 0,97 $\pm0,01$) в отношении прогноза резервуарной функции ЛП после операции обладает оценка S в фазу резервуара до операции, а наибольшей специфичностью (98%, AUC 0,89±0,03) в отношении резервуарной послеоперационной динамики ЛП являются исходные значения SR в резервуарную фазу. Для прогнозирования кондуитной функции ЛП, чувствительность определения дооперационных значений SR в фазу протекания составила 84%, специфичность 89,5% (АUC 0,9±0,02). В определении послеоперационной кондуитной дисфункции ЛП максимальное влияние оказывала SR в кондуитную фазу до операции $(OR 3,9/0,4; OR\pm SE=8,1\pm0,65)$. В прогнозе послеоперационной динамики насосной дооперационной функции ЛП, определение насосной S обладает 85,7% чувствительностью и 94,3% специфичностью (AUC 0,91±0,04), SR в насосную фазу -82,9% чувствительности, 85,7% специфичности (AUC $0,88\pm0,04$). Для прогноза послеоперационной насосной дисфункции ЛП максимальное влияние дооперационная деформация в систолическую фазу ЛП (OR 2,7/0,8; OR±SE=3,2±0,5).

На основании полученных данных об улучшении функции предсердия считаем, что у больных с ИМН S в фазу резервуара в диапазоне 35.7 ± 6.1 %, SR в резервуарную фазу $0.84\pm0.1~\text{c}^{-1}$, S в насосную фазу «-» 5.1 ± 0.98 %, SR в насосную фазу от «-» $1.5\pm0.1~\text{c}^{-1}$, SR в фазу протекания «-» $1.1\pm0.4~\text{c}^{-1}$ свидетельствует о гемодинамической незначимости МР для послеоперационной функции ЛП. Поскольку послеоперационная негативная динамика функции предсердия в различные фазы его деятельности возникает при дооперационных значениях S ЛП 20 ± 4.9 % и SR $0.1\pm0.09~\text{c}^{-1}$ в резервуарный период, SR

в кондуитный период «-» 0.27 ± 0.1 с⁻¹, S «-» 2.1 ± 0.6 % и SR «-» 0.7 ± 0.25 с⁻¹ в насосную фазу предсердия, вышеперечисленные показатели следует рассматривать как маркеры гемодинамической значимости и потенциальной необратимости функционального ремоделирования ЛП.

Через год после операции у выявлена разнонаправленная динамика СН: ф.к. СН снизился у 41 больного (59%), не изменился у 15 (21%), увеличился у 14 (20%). Проанализированы изменения СН после операции в зависимости от S и SR до операции. Снижение ф.к. СН после операции отмечено у больных с исходными показателями Ѕ ЛП в резервуарную фазу 32±6,9% (95% доверительный интервал 29,9-34,2 %) и S в насосную фазу «-» 4±1,3% (95% доверительный интервал «-» 4,4 - «-» 3,6). Отсутствие изменений ф.к. СН в послеоперационном периоде выявлено у пациентов с дооперационными значениями S ЛП в резервуарную фазу $23.3\pm1.9\%$ (95% доверительный интервал 22.2-24) и S в насосную фазу «-» 2,6±0,7% (95% доверительный интервал «-» 2,9 – «-» 2,2). Самые низкие значения S ЛП в резервуарную фазу до операции 16±4,4% (95% доверительный интервал 13,4-18,5) и S в насосную фазу «-» 1,9±0,5% (95% доверительный интервал «-» 2,1 — «-» 1,6) выявлены у пациентов с негативной динамикой СН после операции. Результаты корреляционного анализа демонстрирую тесную (Rs= - 0,7) и умеренную (Rs=0,44) связь механической дисфункции ЛП и наджелудочковых экстрасистол: чем хуже были показатели деформации в резервуарную фазу и скорости деформации в кондуитную фазу ЛП до операции, тем больше регистрировалось суправентрикулярных экстрасистол при суточном мониторировании ЭКГ через год после операции. Низкие значения S в резервуарную фазу ($15 \pm 4 \%$, 95% доверительный интервал 12,2-18,6%) и SR в резервуарную фазу ЛП $(0.1 \pm 0.07 \text{ c}^{-1}, 95\%$ доверительный интервал 0.05 - 0.18) до операции, были ассоциированы с регистрацией пароксизмов фибрилляции предсердий при суточном мониторировании ЭКГ через год после операции. Таким образом, с исходными показателями механической дисфункции ЛП у больных с ИМН связаны такие послеоперационные клинические эффекты, как увеличение наджелудочковых аритмий и негативная динамика СН.

Выводы

- 1. Деформация и скорость деформации левого предсердия ассоциированы с его функциональными показателями (фракцией пассивного и активного опустошения, объёмом заполнения и индексом расширения) в соответствующие фазы у здоровых лиц.
- 2. Показатели механической функции левого предсердия связаны с тяжестью ишемической митральной недостаточности: чем больше регургитация тем более снижены деформация и скорость деформации в соответствующие фазы деятельности предсердия.
- 3. У пациентов с умеренной и выраженной степенью митральной регургитации значения деформации и скорости деформации в различные фазы деятельности левого предсердия сопоставимы, что подтверждает значимость даже умеренной степени регургитации для процессов механического ремоделирования предсердия.

- 4. У больных с исходной незначительной ишемической митральной недостаточностью после хирургической реваскуляризации показатели геометрии, функции и механики левого предсердия улучшаются, но не нормализуются. У пациентов с ишемической митральной недостаточностью ІІ и ІІІ степени после коронарного шунтирования и митральной аннулопластики показатели деформации левого предсердия существенно не меняются.
- 5. Динамика послеоперационной функции левого предсердия определяется исходными показателями деформации и скорости деформации в соответствующие фазы деятельности предсердия.
- 6. Предикторами негативной динамики для индекса расширения, фракции пассивного и активного опустошения являются показатели деформации в фазу резервуара $20 \pm 4.9 \%$ и скорости деформации $0.1 \pm 0.09 \text{ c}^{-1}$ в резервуарный период, скорости деформации в кондуитный период «-» $0.27 \pm 0.1 \text{ c}^{-1}$, насосной деформации «-» $2.1 \pm 0.6 \%$ и скорости деформации в насосную фазу «-» $0.7 \pm 0.2 \text{ c}^{-1}$. Выявленные значения являются маркерами механической дисфункции левого предсердия, ассоциированы с увеличением наджелудочковых аритмий и негативной динамикой сердечной недостаточности.

Практические рекомендации

- 1. У всех пациентов с ишемической митральной недостаточностью необходимо оценивать фазную деятельность левого предсердия.
- 2. Эхокардиографический протокол для больных с ишемической митральной недостаточностью должен включать:
 - геометрические параметры левого предсердия (максимальный, минимальный и р-длинник, индекс минимального, максимального, Р- объема);
 - функциональные данные (фракции пассивного, активного опустошения, объёма заполнения и индекса расширения);
 - механические характеристики левого предсердия (деформация и скорость деформации) в резервуарную, кондуитную и насосную фазы.
- 3. Данные геометрических, функциональных и механических параметров должны быть сопоставлены соответственно фазам деятельности левого предсердия, что поможет обнаружению наиболее уязвимых фаз и определит как компоненты дисфункции и ремоделирования предсердия, так и глобальные его изменения.
- 4. При планировании объема оперативного вмешательства (коронарное шунтирование в изолированном варианте или в сочетании с митральной аннулопластикой) необходимо оценивать гемодинамическую значимость ишемической митральной недостаточности.
- 5. Поскольку у пациентов маркерами механической дисфункции левого предсердия до операции выявляется негативная динамика функциональных показателей после операции, что сопровождается появлением наджелудочковых нарушений ритма и увеличением функционального класса сердечной недостаточности, необходим более пристальный контроль кардиолога и своевременная коррекция лечения.

Перспективы дальнейшей разработки темы

Важным с клинической точки зрения направлением дальнейшей разработки рассматриваемых в нашей работе аспектов может стать исследование возможностей медикаментозной коррекции механической дисфункции ЛП, оценка механических показателей предсердия с использованием векторного анализа скорости движения эндокарда для выбора показаний к дополнительной митральной аннулопластике в случае умеренной степени регургитации.

Список опубликованных работ по теме диссертации

Публикации в журналах, рекомендованных в ВАК РФ

- 1. Оценка механической функции левого предсердия у здоровых взрослых / Т.В. Матановская, Е. Н. Орехова, А.В. Туев, С. Г. Суханов // Пермский медицинский журнал.-2014.- Т. XXXI.-№ 1.-С. 64-72.
- 2. Механическая функция левого предсердия у пациентов с ишемической митральной недостаточностью / Т.В. Матановская, Е.Н. Орехова // Пермский медицинский журнал.-2015.-Т. XXXII.-№1.-С. 61-70.
- 3. Динамика продольной систолической деформации и симптомов хронической сердечной недостаточности у пациентов до и после хирургической реваскуляризации с коррекцией ишемической митральной недостаточности / Е. Н. Орехова, С. Г. Суханов, И. Е. Науменко, Т. В, Матановская // Патология кровообращения и кардиохирургия.-2015.-Т.19.-№ 1.-С. 43-50.
- 4. Оценка механической функции левого предсердия у пациентов с ишемической митральной недостаточностью / Т. В. Матановская, Е. Н. Орехова, С. Г. Суханов // Патология кровообращения и кардиохирургия.-2015.-Т.19.-№2.-С. 55-62.

Публикации в прочих изданиях

- 5. Оценка механической функции левого предсердия у пациентов с ишемической митральной недостаточностью / Т.В. Матановская, М. А. Полевщикова // Бюллетень НЦССХ им. А.Н. Бакулева РАМН «Сердечно-сосудистые заболевания».-2013.- Т. 14.- № 3.-С.80.
- 6. Использование векторного анализа скорости движения эндокарда в оценке функции левого предсердия у больных с ишемической митральной недостаточности / Т.В. Матановская, Е. Н. Орехова // Сборник тезисов Международного конгресса по эхокардиографии «Эхо белых ночей 2015».-2015.- С. 83.
- 7. Численное моделирование деформирования левого предсердия средствами пакета ANSYS / П. И. Свирепов, Т. В. Матановская // Материалы Всероссийской конференции с международным участием и школы-семинара для молодых ученых г. Пермь Издательство Пермского национального исследовательского политехнического университета.-2014.-С. 204-207.
- 8. Деформирование левого предсердия в норме и при патологии / П. И. Свирепов, Т. В. Матановская // Современные проблемы математики и её приложений: труды 46-й Международной молодежной школы-конференции. Екатеринбург: Институт механики и математики УрО РАН.-2015.- С. 169-173.
- 9. Напряженно-деформированное состояние левого предсердия /П. И. Свирепов, Т. В. Матановская Т. В. // Вестник молодых ученых ПГНИУ.-2014.-Т4- С.274-282.

10. Деформирование левого предсердия при патологии / П. И. Свирепов, Т. В. Матановская // Тезисы докладов. XIX Зимняя школа по механике сплошных сред. г.Пермь. – Екатеринбург: РИО УрО РАН.- 2015.-с. 281.

Список сокращений

- Е пик скорости раннего диастолического наполнения
- Е` пик скорости раннего диастолического смещения латеральной части ФК МК
- ИБС ишемическая болезнь сердца
- ИМ инфаркт миокарда
- ИМН ишемическая митральная недостаточность
- ИР индекс расширения
- КСО_И индекс конечного систолического объема
- КДОи индекс конечного диастолического объем
- КШ коронарное шунтирование
- ЛЖ левый желудочек
- ЛП левое предсердие
- МК митральный клапан
- МР митральная регургитация
- СН сердечная недостаточность
- ФАО фракция активного опустошения
- ФВ фракция выброса
- ф.к.- функциональный класс
- ФОЗ фракция объёма заполнения
- ФПО фракция пассивного опустошения
- ЭКГ электрокардиография
- Эхо КГ эхокардиография
- Strain, S деформация
- Strain rate, SR скорость деформации
- v.c. ширина проксимальной струи регургитации, vena contracta
- Velocity Vector Imaging векторный анализ скорости движения эндокарда